class_instances.v 31.1 KB
Newer Older
1
From iris.proofmode Require Export classes.
2
From iris.algebra Require Import gmap.
Ralf Jung's avatar
Ralf Jung committed
3
From stdpp Require Import gmultiset.
4
From iris.base_logic Require Import big_op tactics.
5
Set Default Proof Using "Type".
6
7
8
9
10
11
12
Import uPred.

Section classes.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.

(* FromAssumption *)
13
Global Instance from_assumption_exact p P : FromAssumption p P P | 0.
14
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
15
16
17
Global Instance from_assumption_False p P : FromAssumption p False P | 1.
Proof. destruct p; rewrite /FromAssumption /= ?always_pure; apply False_elim. Qed.

18
19
20
Global Instance from_assumption_always_r P Q :
  FromAssumption true P Q  FromAssumption true P ( Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
21
22
23
24

Global Instance from_assumption_always_l p P Q :
  FromAssumption p P Q  FromAssumption p ( P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
27
28
29
30
Global Instance from_assumption_later p P Q :
  FromAssumption p P Q  FromAssumption p P ( Q)%I.
Proof. rewrite /FromAssumption=>->. apply later_intro. Qed.
Global Instance from_assumption_laterN n p P Q :
  FromAssumption p P Q  FromAssumption p P (^n Q)%I.
Proof. rewrite /FromAssumption=>->. apply laterN_intro. Qed.
31
Global Instance from_assumption_bupd p P Q :
32
  FromAssumption p P Q  FromAssumption p P (|==> Q)%I.
33
Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed.
34
35
36
Global Instance from_assumption_forall {A} p (Φ : A  uPred M) Q x :
  FromAssumption p (Φ x) Q  FromAssumption p ( x, Φ x) Q.
Proof. rewrite /FromAssumption=> <-. by rewrite forall_elim. Qed.
37
38

(* IntoPure *)
Ralf Jung's avatar
Ralf Jung committed
39
Global Instance into_pure_pure φ : @IntoPure M ⌜φ⌝ φ.
40
Proof. done. Qed.
41
Global Instance into_pure_eq {A : ofeT} (a b : A) :
42
43
  Timeless a  @IntoPure M (a  b) (a  b).
Proof. intros. by rewrite /IntoPure timeless_eq. Qed.
44
45
Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
  @IntoPure M ( a) ( a).
46
47
Proof. by rewrite /IntoPure discrete_valid. Qed.

Ralf Jung's avatar
Ralf Jung committed
48
Global Instance into_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
49
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
50
Proof. rewrite /IntoPure pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
51
Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
52
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
53
Proof. rewrite /IntoPure sep_and pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
54
Global Instance into_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
55
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
56
Proof. rewrite /IntoPure pure_or. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
57
Global Instance into_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
58
  FromPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
59
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
60
Global Instance into_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
61
  FromPure P1 φ1  IntoPure P2 φ2  IntoPure (P1 - P2) (φ1  φ2).
62
63
64
65
Proof.
  rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
66
Global Instance into_pure_exist {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
67
68
69
70
71
72
  ( x, @IntoPure M (Φ x) (φ x))  @IntoPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /IntoPure=>Hx. apply exist_elim=>x. rewrite Hx.
  apply pure_elim'=>Hφ. apply pure_intro. eauto.
Qed.

Ralf Jung's avatar
Ralf Jung committed
73
Global Instance into_pure_forall {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
74
75
76
77
78
  ( x, @IntoPure M (Φ x) (φ x))  @IntoPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /IntoPure=>Hx. rewrite -pure_forall_2. by setoid_rewrite Hx.
Qed.

79
(* FromPure *)
Ralf Jung's avatar
Ralf Jung committed
80
Global Instance from_pure_pure φ : @FromPure M ⌜φ⌝ φ.
81
Proof. done. Qed.
82
Global Instance from_pure_internal_eq {A : ofeT} (a b : A) :
83
84
85
86
  @FromPure M (a  b) (a  b).
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ->. apply internal_eq_refl'.
Qed.
87
88
Global Instance from_pure_cmra_valid {A : cmraT} (a : A) :
  @FromPure M ( a) ( a).
89
90
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ?.
91
  rewrite -cmra_valid_intro //. auto with I.
92
Qed.
93
Global Instance from_pure_bupd P φ : FromPure P φ  FromPure (|==> P) φ.
94
Proof. rewrite /FromPure=> ->. apply bupd_intro. Qed.
95

Ralf Jung's avatar
Ralf Jung committed
96
Global Instance from_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
97
  FromPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
98
Proof. rewrite /FromPure pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
99
Global Instance from_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
100
  FromPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
101
Proof. rewrite /FromPure pure_and always_and_sep_l. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
102
Global Instance from_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
103
  FromPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
104
Proof. rewrite /FromPure pure_or. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
105
Global Instance from_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
106
  IntoPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
107
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
108
Global Instance from_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
109
  IntoPure P1 φ1  FromPure P2 φ2  FromPure (P1 - P2) (φ1  φ2).
110
111
112
113
Proof.
  rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
114
Global Instance from_pure_exist {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
115
116
117
118
119
  ( x, @FromPure M (Φ x) (φ x))  @FromPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /FromPure=>Hx. apply pure_elim'=>-[x ?]. rewrite -(exist_intro x).
  rewrite -Hx. apply pure_intro. done.
Qed.
Ralf Jung's avatar
Ralf Jung committed
120
Global Instance from_pure_forall {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
121
122
123
124
125
126
  ( x, @FromPure M (Φ x) (φ x))  @FromPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /FromPure=>Hx. apply forall_intro=>x. apply pure_elim'=>Hφ.
  rewrite -Hx. apply pure_intro. done.
Qed.

127
128
129
130
131
132
133
134
135
136
137
(* IntoPersistentP *)
Global Instance into_persistentP_always_trans P Q :
  IntoPersistentP P Q  IntoPersistentP ( P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP ( P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
  PersistentP P  IntoPersistentP P P | 100.
Proof. done. Qed.

(* IntoLater *)
138
Global Instance into_laterN_later n P Q :
139
140
141
  IntoLaterN n P Q  IntoLaterN' (S n) ( P) Q.
Proof. by rewrite /IntoLaterN' /IntoLaterN =>->. Qed.
Global Instance into_laterN_laterN n P : IntoLaterN' n (^n P) P.
142
Proof. done. Qed.
143
Global Instance into_laterN_laterN_plus n m P Q :
144
145
  IntoLaterN m P Q  IntoLaterN' (n + m) (^n P) Q.
Proof. rewrite /IntoLaterN' /IntoLaterN=>->. by rewrite laterN_plus. Qed.
146

147
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
148
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
149
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
150
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_and. Qed.
151
Global Instance into_laterN_and_r n P P2 Q2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  IntoLaterN' n P2 Q2  IntoLaterN' n (P  P2) (P  Q2) | 11.
153
Proof.
154
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Qed.
156
157

Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
158
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
160
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_or. Qed.
161
Global Instance into_laterN_or_r n P P2 Q2 :
162
  IntoLaterN' n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
163
  IntoLaterN' n (P  P2) (P  Q2) | 11.
164
Proof.
165
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
166
167
168
Qed.

Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
169
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
170
171
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_sep. Qed.
172
Global Instance into_laterN_sep_r n P P2 Q2 :
173
  IntoLaterN' n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  IntoLaterN' n (P  P2) (P  Q2) | 11.
175
Proof.
176
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
177
Qed.
178
179

Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat  A  uPred M) (l: list A) :
180
181
  ( x k, IntoLaterN' n (Φ k x) (Ψ k x)) 
  IntoLaterN' n ([ list] k  x  l, Φ k x) ([ list] k  x  l, Ψ k x).
182
Proof.
183
  rewrite /IntoLaterN' /IntoLaterN=> ?.
184
  rewrite big_opL_commute. by apply big_sepL_mono.
185
186
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
187
    (Φ Ψ : K  A  uPred M) (m : gmap K A) :
188
189
  ( x k, IntoLaterN' n (Φ k x) (Ψ k x)) 
  IntoLaterN' n ([ map] k  x  m, Φ k x) ([ map] k  x  m, Ψ k x).
190
Proof.
191
  rewrite /IntoLaterN' /IntoLaterN=> ?.
192
  rewrite big_opM_commute; by apply big_sepM_mono.
193
Qed.
194
Global Instance into_laterN_big_sepS n `{Countable A}
195
    (Φ Ψ : A  uPred M) (X : gset A) :
196
197
  ( x, IntoLaterN' n (Φ x) (Ψ x)) 
  IntoLaterN' n ([ set] x  X, Φ x) ([ set] x  X, Ψ x).
198
Proof.
199
  rewrite /IntoLaterN' /IntoLaterN=> ?.
200
  rewrite big_opS_commute; by apply big_sepS_mono.
201
202
203
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
    (Φ Ψ : A  uPred M) (X : gmultiset A) :
204
205
  ( x, IntoLaterN' n (Φ x) (Ψ x)) 
  IntoLaterN' n ([ mset] x  X, Φ x) ([ mset] x  X, Ψ x).
206
Proof.
207
  rewrite /IntoLaterN' /IntoLaterN=> ?.
208
  rewrite big_opMS_commute; by apply big_sepMS_mono.
209
210
211
Qed.

(* FromLater *)
212
Global Instance from_laterN_later P :FromLaterN 1 ( P) P | 0.
213
Proof. done. Qed.
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
Global Instance from_laterN_laterN n P : FromLaterN n (^n P) P | 0.
Proof. done. Qed.

(* The instances below are used when stripping a specific number of laters, or
to balance laters in different branches of ∧, ∨ and ∗. *)
Global Instance from_laterN_0 P : FromLaterN 0 P P | 100. (* fallthrough *)
Proof. done. Qed.
Global Instance from_laterN_later_S n P Q :
  FromLaterN n P Q  FromLaterN (S n) ( P) Q.
Proof. by rewrite /FromLaterN=><-. Qed.
Global Instance from_laterN_later_plus n m P Q :
  FromLaterN m P Q  FromLaterN (n + m) (^n P) Q.
Proof. rewrite /FromLaterN=><-. by rewrite laterN_plus. Qed.

Global Instance from_later_and n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_and; apply and_mono. Qed.
Global Instance from_later_or n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_or; apply or_mono. Qed.
Global Instance from_later_sep n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed.
237

238
239
240
241
242
243
244
245
246
247
248
249
Global Instance from_later_always n P Q :
  FromLaterN n P Q  FromLaterN n ( P) ( Q).
Proof. by rewrite /FromLaterN -always_laterN=> ->. Qed.

Global Instance from_later_forall {A} n (Φ Ψ : A  uPred M) :
  ( x, FromLaterN n (Φ x) (Ψ x))  FromLaterN n ( x, Φ x) ( x, Ψ x).
Proof. rewrite /FromLaterN laterN_forall=> ?. by apply forall_mono. Qed.
Global Instance from_later_exist {A} n (Φ Ψ : A  uPred M) :
  Inhabited A  ( x, FromLaterN n (Φ x) (Ψ x)) 
  FromLaterN n ( x, Φ x) ( x, Ψ x).
Proof. intros ?. rewrite /FromLaterN laterN_exist=> ?. by apply exist_mono. Qed.

250
(* IntoWand *)
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
Global Instance wand_weaken_exact P Q : WandWeaken P Q P Q.
Proof. done. Qed.
Global Instance wand_weaken_later P Q P' Q' :
  WandWeaken P Q P' Q'  WandWeaken' P Q ( P') ( Q').
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->. by rewrite -later_wand -later_intro.
Qed.
Global Instance wand_weaken_laterN n P Q P' Q' :
  WandWeaken P Q P' Q'  WandWeaken' P Q (^n P') (^n Q').
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->. by rewrite -laterN_wand -laterN_intro.
Qed.
Global Instance bupd_weaken_laterN P Q P' Q' :
  WandWeaken P Q P' Q'  WandWeaken' P Q (|==> P') (|==> Q').
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->.
  apply wand_intro_l. by rewrite bupd_wand_r.
Qed.

Global Instance into_wand_wand P P' Q Q' :
  WandWeaken P Q P' Q'  IntoWand (P - Q) P' Q'.
Proof. done. Qed.
Global Instance into_wand_impl P P' Q Q' :
  WandWeaken P Q P' Q'  IntoWand (P  Q) P' Q'.
Proof. rewrite /WandWeaken /IntoWand /= => <-. apply impl_wand. Qed.

Global Instance into_wand_iff_l P P' Q Q' :
  WandWeaken P Q P' Q'  IntoWand (P  Q) P' Q'.
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P P' Q Q' :
  WandWeaken Q P Q' P'  IntoWand (P  Q) Q' P'.
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_r', impl_wand. Qed.
283

284
285
286
Global Instance into_wand_forall {A} (Φ : A  uPred M) P Q x :
  IntoWand (Φ x) P Q  IntoWand ( x, Φ x) P Q.
Proof. rewrite /IntoWand=> <-. apply forall_elim. Qed.
287
288
Global Instance into_wand_always R P Q : IntoWand R P Q  IntoWand ( R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
289

Robbert Krebbers's avatar
Robbert Krebbers committed
290
291
292
293
294
295
Global Instance into_wand_later R P Q :
  IntoWand R P Q  IntoWand ( R) ( P) ( Q).
Proof. rewrite /IntoWand=> ->. by rewrite -later_wand. Qed.
Global Instance into_wand_laterN n R P Q :
  IntoWand R P Q  IntoWand (^n R) (^n P) (^n Q).
Proof. rewrite /IntoWand=> ->. by rewrite -laterN_wand. Qed.
296
Global Instance into_wand_bupd R P Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
297
  IntoWand R P Q  IntoWand (|==> R) (|==> P) (|==> Q).
298
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
  rewrite /IntoWand=> ->. apply wand_intro_l. by rewrite bupd_sep wand_elim_r.
300
Qed.
301
302

(* FromAnd *)
303
304
305
306
Global Instance from_and_and p P1 P2 : FromAnd p (P1  P2) P1 P2 | 100.
Proof. by apply mk_from_and_and. Qed.

Global Instance from_and_sep P1 P2 : FromAnd false (P1  P2) P1 P2 | 100.
307
308
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
309
  PersistentP P1  FromAnd true (P1  P2) P1 P2 | 9.
310
311
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
312
  PersistentP P2  FromAnd true (P1  P2) P1 P2 | 10.
313
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Global Instance from_and_pure p φ ψ : @FromAnd M p ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_from_and_and. by rewrite pure_and. Qed.
Global Instance from_and_always p P Q1 Q2 :
  FromAnd false P Q1 Q2  FromAnd p ( P) ( Q1) ( Q2).
Proof.
  intros. apply mk_from_and_and.
  by rewrite always_and_sep_l' -always_sep -(from_and _ P).
Qed.
Global Instance from_and_later p P Q1 Q2 :
  FromAnd p P Q1 Q2  FromAnd p ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. destruct p; by rewrite ?later_and ?later_sep. Qed.
Global Instance from_and_laterN p n P Q1 Q2 :
  FromAnd p P Q1 Q2  FromAnd p (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromAnd=> <-. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.

330
331
Global Instance from_sep_ownM (a b1 b2 : M) :
  FromOp a b1 b2 
332
333
  FromAnd false (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /FromAnd -ownM_op from_op. Qed.
334
335
336
337
338
339
340
Global Instance from_sep_ownM_persistent (a b1 b2 : M) :
  FromOp a b1 b2  Or (Persistent b1) (Persistent b2) 
  FromAnd true (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
  intros ? Hper; apply mk_from_and_persistent; [destruct Hper; apply _|].
  by rewrite -ownM_op from_op.
Qed.
341

342
Global Instance from_sep_bupd P Q1 Q2 :
343
344
345
346
347
  FromAnd false P Q1 Q2  FromAnd false (|==> P) (|==> Q1) (|==> Q2).
Proof. rewrite /FromAnd=><-. apply bupd_sep. Qed.

Global Instance from_and_big_sepL_app {A} (Φ : nat  A  uPred M) l1 l2 :
  FromAnd false ([ list] k  y  l1 ++ l2, Φ k y)
348
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
349
Proof. by rewrite /FromAnd big_opL_app. Qed.
350
351
352
353
354
Global Instance from_sep_big_sepL_app_persistent {A} (Φ : nat  A  uPred M) l1 l2 :
  ( k y, PersistentP (Φ k y)) 
  FromAnd true ([ list] k  y  l1 ++ l2, Φ k y)
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
Proof. intros. by rewrite /FromAnd big_opL_app always_and_sep_l. Qed.
355

356
357
358
(* FromOp *)
Global Instance from_op_op {A : cmraT} (a b : A) : FromOp (a  b) a b.
Proof. by rewrite /FromOp. Qed.
359
360
361

(* TODO: Worst case there could be a lot of backtracking on these instances,
try to refactor. *)
362
Global Instance from_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
363
  FromOp a b1 b2  FromOp a' b1' b2'  FromOp (a,a') (b1,b1') (b2,b2').
364
Proof. by constructor. Qed.
365
366
367
368
369
370
371
Global Instance from_op_pair_persistent_l {A B : cmraT} (a : A) (a' b1' b2' : B) :
  Persistent a  FromOp a' b1' b2'  FromOp (a,a') (a,b1') (a,b2').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
Global Instance from_op_pair_persistent_r {A B : cmraT} (a b1 b2 : A) (a' : B) :
  Persistent a'  FromOp a b1 b2  FromOp (a,a') (b1,a') (b2,a').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.

372
373
374
375
Global Instance from_op_Some {A : cmraT} (a : A) b1 b2 :
  FromOp a b1 b2  FromOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

376
377
378
(* IntoOp *)
Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a  b) a b.
Proof. by rewrite /IntoOp. Qed.
379

380
381
382
383
Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
  IntoOp a b1 b2  IntoOp a' b1' b2' 
  IntoOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
384
385
386
387
388
389
390
Global Instance into_op_pair_persistent_l {A B : cmraT} (a : A) (a' b1' b2' : B) :
  Persistent a  IntoOp a' b1' b2'  IntoOp (a,a') (a,b1') (a,b2').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
Global Instance into_op_pair_persistent_r {A B : cmraT} (a b1 b2 : A) (a' : B) :
  Persistent a'  IntoOp a b1 b2  IntoOp (a,a') (b1,a') (b2,a').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.

391
392
393
394
Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 :
  IntoOp a b1 b2  IntoOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

395
(* IntoAnd *)
396
Global Instance into_and_sep p P Q : IntoAnd p (P  Q) P Q.
397
398
Proof. by apply mk_into_and_sep. Qed.
Global Instance into_and_ownM p (a b1 b2 : M) :
399
  IntoOp a b1 b2 
400
401
  IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) ownM_op. Qed.
402

403
Global Instance into_and_and P Q : IntoAnd true (P  Q) P Q.
404
Proof. done. Qed.
405
406
407
408
409
410
411
Global Instance into_and_and_persistent_l P Q :
  PersistentP P  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_l. Qed.
Global Instance into_and_and_persistent_r P Q :
  PersistentP Q  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_r. Qed.

412
413
414
415
416
417
418
Global Instance into_and_pure p φ ψ : @IntoAnd M p ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_into_and_sep. by rewrite pure_and always_and_sep_r. Qed.
Global Instance into_and_always p P Q1 Q2 :
  IntoAnd true P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof.
  rewrite /IntoAnd=>->. destruct p; by rewrite ?always_and always_and_sep_r.
Qed.
419
420
421
Global Instance into_and_later p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?later_and ?later_sep. Qed.
422
423
424
Global Instance into_and_laterN n p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p (^n P) (^n Q1) (^n Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.
425

426
427
(* We use [IsApp] to make sure that [frame_big_sepL_app] cannot be applied
repeatedly often when having [ [∗ list] k ↦ x ∈ ?e, Φ k x] with [?e] an evar. *)
428
429
430
Global Instance into_and_big_sepL_app {A} p (Φ : nat  A  uPred M) l l1 l2 :
  IsApp l l1 l2 
  IntoAnd p ([ list] k  y  l, Φ k y)
431
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
432
Proof. rewrite /IsApp=>->. apply mk_into_and_sep. by rewrite big_sepL_app. Qed.
433
434

(* Frame *)
435
436
437
438
Global Instance frame_here p R : Frame p R R True.
Proof. by rewrite /Frame right_id always_if_elim. Qed.
Global Instance frame_here_pure p φ Q : FromPure Q φ  Frame p ⌜φ⌝ Q True.
Proof. rewrite /FromPure /Frame=> ->. by rewrite always_if_elim right_id. Qed.
439

440
Class MakeSep (P Q PQ : uPred M) := make_sep : P  Q  PQ.
441
442
443
444
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
445
Global Instance make_sep_default P Q : MakeSep P Q (P  Q) | 100.
446
Proof. done. Qed.
447
448
449
450
451
452
453
454

Global Instance frame_sep_persistent_l R P1 P2 Q1 Q2 Q' :
  Frame true R P1 Q1  MaybeFrame true R P2 Q2  MakeSep Q1 Q2 Q' 
  Frame true R (P1  P2) Q' | 9.
Proof.
  rewrite /Frame /MaybeFrame /MakeSep /= => <- <- <-.
  rewrite {1}(always_sep_dup ( R)). solve_sep_entails.
Qed.
455
Global Instance frame_sep_l R P1 P2 Q Q' :
456
  Frame false R P1 Q  MakeSep Q P2 Q'  Frame false R (P1  P2) Q' | 9.
457
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
458
459
460
Global Instance frame_sep_r p R P1 P2 Q Q' :
  Frame p R P2 Q  MakeSep P1 Q Q'  Frame p R (P1  P2) Q' | 10.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc -(comm _ P1) assoc. Qed.
461

462
463
Global Instance frame_big_sepL_app {A} p (Φ : nat  A  uPred M) R Q l l1 l2 :
  IsApp l l1 l2 
464
  Frame p R (([ list] k  y  l1, Φ k y) 
465
           [ list] k  y  l2, Φ (length l1 + k) y) Q 
466
  Frame p R ([ list] k  y  l, Φ k y) Q.
467
Proof. rewrite /IsApp=>->. by rewrite /Frame big_opL_app. Qed.
468

469
470
471
472
473
Class MakeAnd (P Q PQ : uPred M) := make_and : P  Q  PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
474
Global Instance make_and_default P Q : MakeAnd P Q (P  Q) | 100.
475
Proof. done. Qed.
476
477
Global Instance frame_and_l p R P1 P2 Q Q' :
  Frame p R P1 Q  MakeAnd Q P2 Q'  Frame p R (P1  P2) Q' | 9.
478
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
479
480
Global Instance frame_and_r p R P1 P2 Q Q' :
  Frame p R P2 Q  MakeAnd P1 Q Q'  Frame p R (P1  P2) Q' | 10.
481
482
483
484
485
486
487
488
489
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.

Class MakeOr (P Q PQ : uPred M) := make_or : P  Q  PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P  Q) | 100.
Proof. done. Qed.
490
491
492
493
494
495
496
497
498
499
500

Global Instance frame_or_persistent_l R P1 P2 Q1 Q2 Q :
  Frame true R P1 Q1  MaybeFrame true R P2 Q2  MakeOr Q1 Q2 Q 
  Frame true R (P1  P2) Q | 9.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
Global Instance frame_or_persistent_r R P1 P2 Q1 Q2 Q :
  MaybeFrame true R P2 Q2  MakeOr P1 Q2 Q 
  Frame true R (P1  P2) Q | 10.
Proof.
  rewrite /Frame /MaybeFrame /MakeOr => <- <-. by rewrite sep_or_l sep_elim_r.
Qed.
501
Global Instance frame_or R P1 P2 Q1 Q2 Q :
502
503
  Frame false R P1 Q1  Frame false R P2 Q2  MakeOr Q1 Q2 Q 
  Frame false R (P1  P2) Q.
504
505
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.

506
507
Global Instance frame_wand p R P1 P2 Q2 :
  Frame p R P2 Q2  Frame p R (P1 - P2) (P1 - Q2).
508
509
510
511
512
513
514
515
516
517
518
Proof.
  rewrite /Frame=> ?. apply wand_intro_l.
  by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.

Class MakeLater (P lP : uPred M) := make_later :  P  lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_default P : MakeLater P ( P) | 100.
Proof. done. Qed.

519
520
Global Instance frame_later p R R' P Q Q' :
  IntoLaterN 1 R' R  Frame p R P Q  MakeLater Q Q'  Frame p R' ( P) Q'.
521
Proof.
522
523
  rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-.
  by rewrite always_if_later later_sep.
524
525
526
527
528
529
530
531
Qed.

Class MakeLaterN (n : nat) (P lP : uPred M) := make_laterN : ^n P  lP.
Global Instance make_laterN_true n : MakeLaterN n True True.
Proof. by rewrite /MakeLaterN laterN_True. Qed.
Global Instance make_laterN_default P : MakeLaterN n P (^n P) | 100.
Proof. done. Qed.

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
Global Instance frame_laterN p n R R' P Q Q' :
  IntoLaterN n R' R  Frame p R P Q  MakeLaterN n Q Q'  Frame p R' (^n P) Q'.
Proof.
  rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-.
  by rewrite always_if_laterN laterN_sep.
Qed.

Class MakeAlways (P Q : uPred M) := make_always :  P  Q.
Global Instance make_always_true : MakeAlways True True.
Proof. by rewrite /MakeAlways always_pure. Qed.
Global Instance make_always_default P : MakeAlways P ( P) | 100.
Proof. done. Qed.

Global Instance frame_always R P Q Q' :
  Frame true R P Q  MakeAlways Q Q'  Frame true R ( P) Q'.
547
Proof.
548
549
  rewrite /Frame /MakeAlways=> <- <-.
  by rewrite always_sep /= always_always.
550
551
Qed.

552
553
554
555
Class MakeExcept0 (P Q : uPred M) := make_except_0 :  P  Q.
Global Instance make_except_0_True : MakeExcept0 True True.
Proof. by rewrite /MakeExcept0 except_0_True. Qed.
Global Instance make_except_0_default P : MakeExcept0 P ( P) | 100.
556
557
Proof. done. Qed.

558
559
Global Instance frame_except_0 p R P Q Q' :
  Frame p R P Q  MakeExcept0 Q Q'  Frame p R ( P) Q'.
560
Proof.
561
  rewrite /Frame /MakeExcept0=><- <-.
562
  by rewrite except_0_sep -(except_0_intro (?p R)).
563
564
Qed.

565
566
Global Instance frame_exist {A} p R (Φ Ψ : A  uPred M) :
  ( a, Frame p R (Φ a) (Ψ a))  Frame p R ( x, Φ x) ( x, Ψ x).
567
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
568
569
Global Instance frame_forall {A} p R (Φ Ψ : A  uPred M) :
  ( a, Frame p R (Φ a) (Ψ a))  Frame p R ( x, Φ x) ( x, Ψ x).
570
571
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.

572
Global Instance frame_bupd p R P Q : Frame p R P Q  Frame p R (|==> P) (|==> Q).
573
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
574

575
576
577
(* FromOr *)
Global Instance from_or_or P1 P2 : FromOr (P1  P2) P1 P2.
Proof. done. Qed.
578
Global Instance from_or_bupd P Q1 Q2 :
579
  FromOr P Q1 Q2  FromOr (|==> P) (|==> Q1) (|==> Q2).
580
Proof. rewrite /FromOr=><-. apply or_elim; apply bupd_mono; auto with I. Qed.
581
582
Global Instance from_or_pure φ ψ : @FromOr M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromOr pure_or. Qed.
583
584
585
Global Instance from_or_always P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
Proof. rewrite /FromOr=> <-. by rewrite always_or. Qed.
586
587
Global Instance from_or_later P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
588
Proof. rewrite /FromOr=><-. by rewrite later_or. Qed.
589
590
591
Global Instance from_or_laterN n P Q1 Q2 :
  FromOr P Q1 Q2  FromOr (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromOr=><-. by rewrite laterN_or. Qed.
592
593
594
595

(* IntoOr *)
Global Instance into_or_or P Q : IntoOr (P  Q) P Q.
Proof. done. Qed.
596
597
598
599
600
Global Instance into_or_pure φ ψ : @IntoOr M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoOr pure_or. Qed.
Global Instance into_or_always P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite always_or. Qed.
601
602
603
Global Instance into_or_later P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.
604
605
606
Global Instance into_or_laterN n P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr (^n P) (^n Q1) (^n Q2).
Proof. rewrite /IntoOr=>->. by rewrite laterN_or. Qed.
607
608

(* FromExist *)
609
Global Instance from_exist_exist {A} (Φ : A  uPred M): FromExist ( a, Φ a) Φ.
610
Proof. done. Qed.
611
Global Instance from_exist_bupd {A} P (Φ : A  uPred M) :
612
  FromExist P Φ  FromExist (|==> P) (λ a, |==> Φ a)%I.
613
614
615
Proof.
  rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
616
617
618
619
620
621
622
623
Global Instance from_exist_pure {A} (φ : A  Prop) :
  @FromExist M A  x, φ x (λ a, ⌜φ a)%I.
Proof. by rewrite /FromExist pure_exist. Qed.
Global Instance from_exist_always {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply always_mono, exist_intro.
Qed.
624
625
Global Instance from_exist_later {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
626
627
628
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro.
Qed.
629
630
631
632
633
Global Instance from_exist_laterN {A} n P (Φ : A  uPred M) :
  FromExist P Φ  FromExist (^n P) (λ a, ^n (Φ a))%I.
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply laterN_mono, exist_intro.
Qed.
634
635
636
637

(* IntoExist *)
Global Instance into_exist_exist {A} (Φ : A  uPred M) : IntoExist ( a, Φ a) Φ.
Proof. done. Qed.
638
639
640
Global Instance into_exist_pure {A} (φ : A  Prop) :
  @IntoExist M A  x, φ x (λ a, ⌜φ a)%I.
Proof. by rewrite /IntoExist pure_exist. Qed.
641
642
643
Global Instance into_exist_always {A} P (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
644
645
646
647
648
649
Global Instance into_exist_later {A} P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_laterN {A} n P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist (^n P) (λ a, ^n (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed.
650

651
652
653
654
655
656
657
(* IntoForall *)
Global Instance into_forall_forall {A} (Φ : A  uPred M) : IntoForall ( a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_forall_always {A} P (Φ : A  uPred M) :
  IntoForall P Φ  IntoForall ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP always_forall. Qed.

658
659
(* FromModal *)
Global Instance from_modal_later P : FromModal ( P) P.
660
Proof. apply later_intro. Qed.
661
Global Instance from_modal_bupd P : FromModal (|==> P) P.
662
Proof. apply bupd_intro. Qed.
663
Global Instance from_modal_except_0 P : FromModal ( P) P.
664
665
666
Proof. apply except_0_intro. Qed.

(* ElimModal *)
667
Global Instance elim_modal_wand P P' Q Q' R :
668
  ElimModal P P' Q Q'  ElimModal P P' (R - Q) (R - Q').
669
670
671
672
673
674
675
676
677
678
Proof.
  rewrite /ElimModal=> H. apply wand_intro_r.
  by rewrite wand_curry -assoc (comm _ P') -wand_curry wand_elim_l.
Qed.
Global Instance forall_modal_wand {A} P P' (Φ Ψ : A  uPred M) :
  ( x, ElimModal P P' (Φ x) (Ψ x))  ElimModal P P' ( x, Φ x) ( x, Ψ x).
Proof.
  rewrite /ElimModal=> H. apply forall_intro=> a. by rewrite (forall_elim a).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
679
680
681
Global Instance elim_modal_always P Q : ElimModal ( P) P Q Q.
Proof. intros. by rewrite /ElimModal always_elim wand_elim_r. Qed.

682
683
684
685
686
Global Instance elim_modal_bupd P Q : ElimModal (|==> P) P (|==> Q) (|==> Q).
Proof. by rewrite /ElimModal bupd_frame_r wand_elim_r bupd_trans. Qed.

Global Instance elim_modal_except_0 P Q : IsExcept0 Q  ElimModal ( P) P Q Q.
Proof.
687
  intros. rewrite /ElimModal (except_0_intro (_ - _)).
688
689
690
691
692
  by rewrite -except_0_sep wand_elim_r.
Qed.
Global Instance elim_modal_timeless_bupd P Q :
  TimelessP P  IsExcept0 Q  ElimModal ( P) P Q Q.
Proof.
693
  intros. rewrite /ElimModal (except_0_intro (_ - _)) (timelessP P).
694
695
  by rewrite -except_0_sep wand_elim_r.
Qed.
696
697
698
699
700
701
Global Instance elim_modal_timeless_bupd' p P Q :
  TimelessP P  IsExcept0 Q  ElimModal (?p P) P Q Q.
Proof.
  destruct p; simpl; auto using elim_modal_timeless_bupd.
  intros _ _. by rewrite /ElimModal wand_elim_r.
Qed.
702

703
704
705
706
707
Global Instance is_except_0_except_0 P : IsExcept0 ( P).
Proof. by rewrite /IsExcept0 except_0_idemp. Qed.
Global Instance is_except_0_later P : IsExcept0 ( P).
Proof. by rewrite /IsExcept0 except_0_later. Qed.
Global Instance is_except_0_bupd P : IsExcept0 P  IsExcept0 (|==> P).
708
Proof.
709
710
  rewrite /IsExcept0=> HP.
  by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P).
711
Qed.
712
End classes.