RA.v 8.09 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
(** Resource algebras: Commutative monoids with a decidable validity predicate. *)

Require Import Bool.
Require Export Predom.
Require Import MetricCore.
Require Import PreoMet.

Class Associative {T} `{eqT : Setoid T} (op : T -> T -> T) :=
  assoc : forall t1 t2 t3, op t1 (op t2 t3) == op (op t1 t2) t3.
Class Commutative {T} `{eqT : Setoid T} (op : T -> T -> T) :=
  comm  : forall t1 t2, op t1 t2 == op t2 t1.

Section Definitions.
  Context (T : Type) `{Setoid T}.

  Class RA_unit := ra_unit : T.
  Class RA_op   := ra_op : T -> T -> T.
  Class RA_valid:= ra_valid : T -> bool.
  Class RA {TU : RA_unit} {TOP : RA_op} {TV : RA_valid}: Prop :=
    mkRA {
        ra_op_proper       :> Proper (equiv ==> equiv ==> equiv) ra_op;
        ra_op_assoc        :> Associative ra_op;
        ra_op_comm         :> Commutative ra_op;
        ra_op_unit t       : ra_op ra_unit t == t;
        ra_valid_proper    :> Proper (equiv ==> eq) ra_valid;
        ra_valid_unit      : ra_valid ra_unit = true;
Ralf Jung's avatar
Ralf Jung committed
27
        ra_op_valid t1 t2  : ra_valid (ra_op t1 t2) = true -> ra_valid t1 = true
28 29
      }.
End Definitions.
Ralf Jung's avatar
Ralf Jung committed
30
Arguments ra_valid {T} {_} t.
31 32 33

Notation "1" := (ra_unit _) : ra_scope.
Notation "p · q" := (ra_op _ p q) (at level 40, left associativity) : ra_scope.
Ralf Jung's avatar
Ralf Jung committed
34 35
Notation "'✓' p" := (ra_valid p = true) (at level 35) : ra_scope.
Notation "'~' '✓' p" := (ra_valid p <> true) (at level 35) : ra_scope.
36
Delimit Scope ra_scope with ra.
Ralf Jung's avatar
Ralf Jung committed
37 38

Tactic Notation "decide✓" ident(t1) "eqn:" ident(H) := destruct (ra_valid t1) eqn:H; [|apply not_true_iff_false in H].
39 40 41 42 43 44 45 46 47 48 49


(* General RA lemmas *)
Section RAs.
  Context {T} `{RA T}.
  Local Open Scope ra_scope.

  Lemma ra_op_unit2 t: t · 1 == t.
  Proof.
    rewrite comm. now eapply ra_op_unit.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
50 51
  
  Lemma ra_op_valid2 t1 t2:  (t1 · t2) ->  t2.
52
  Proof.
Ralf Jung's avatar
Ralf Jung committed
53
    rewrite comm. now eapply ra_op_valid.
54 55
  Qed.

Ralf Jung's avatar
Ralf Jung committed
56
  Lemma ra_op_invalid t1 t2: ~t1 -> ~(t1 · t2).
57
  Proof.
Ralf Jung's avatar
Ralf Jung committed
58 59 60
    intros Hinval Hval.
    apply Hinval.
    eapply ra_op_valid; now eauto.
61 62
  Qed.

Ralf Jung's avatar
Ralf Jung committed
63
  Lemma ra_op_invalid2 t1 t2: ~t2 -> ~(t1 · t2).
64
  Proof.
Ralf Jung's avatar
Ralf Jung committed
65
    rewrite comm. now eapply ra_op_invalid.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  Qed.
End RAs.

(* RAs with cartesian products of carriers. *)
Section Products.
  Context S T `{raS : RA S, raT : RA T}.
  Local Open Scope ra_scope.

  Global Instance ra_unit_prod : RA_unit (S * T) := (ra_unit S, ra_unit T).
  Global Instance ra_op_prod : RA_op (S * T) :=
    fun st1 st2 =>
      match st1, st2 with
        | (s1, t1), (s2, t2) => (s1 · s2, t1 · t2)
      end.
  Global Instance ra_valid_prod : RA_valid (S * T) :=
Ralf Jung's avatar
Ralf Jung committed
81
    fun st => match st with (s, t) => ra_valid s && ra_valid t
82 83 84 85 86 87 88 89 90 91 92 93
              end.
  Global Instance ra_prod : RA (S * T).
  Proof.
    split.
    - intros [s1 t1] [s2 t2] [Heqs Heqt]. intros [s'1 t'1] [s'2 t'2] [Heqs' Heqt']. simpl in *.
      split; [rewrite Heqs, Heqs'|rewrite Heqt, Heqt']; reflexivity.
    - intros [s1 t1] [s2 t2] [s3 t3]. simpl; split; now rewrite ra_op_assoc.
    - intros [s1 t1] [s2 t2]. simpl; split; now rewrite ra_op_comm.
    - intros [s t]. simpl; split; now rewrite ra_op_unit.
    - intros [s1 t1] [s2 t2] [Heqs Heqt]. unfold ra_valid; simpl in *.
      rewrite Heqs, Heqt. reflexivity.
    - unfold ra_unit, ra_valid; simpl. erewrite !ra_valid_unit by apply _. reflexivity.
Ralf Jung's avatar
Ralf Jung committed
94 95 96
    - intros [s1 t1] [s2 t2]. unfold ra_valid; simpl. rewrite !andb_true_iff. intros [H1 H2]. split.
      + eapply ra_op_valid; now eauto.
      + eapply ra_op_valid; now eauto.
97 98 99 100 101 102 103 104
  Qed.

End Products.

Section PositiveCarrier.
  Context {T} `{raT : RA T}.
  Local Open Scope ra_scope.

Ralf Jung's avatar
Ralf Jung committed
105
  Definition ra_pos: Type := { r |  r }.
106 107
  Coercion ra_proj (t:ra_pos): T := proj1_sig t.

Ralf Jung's avatar
Ralf Jung committed
108
  Definition ra_mk_pos t {VAL:  t}: ra_pos := exist _ t VAL.
109 110 111 112 113 114

  Program Definition ra_pos_unit: ra_pos := exist _ 1 _.
  Next Obligation.
    now erewrite ra_valid_unit by apply _.
  Qed.

115
  Lemma ra_op_pos_valid t1 t2 t:
Ralf Jung's avatar
Ralf Jung committed
116
    t1 · t2 == ra_proj t ->  t1.
117 118
  Proof.
    destruct t as [t Hval]; simpl. intros Heq. rewrite <-Heq in Hval.
Ralf Jung's avatar
Ralf Jung committed
119
    eapply ra_op_valid; eassumption.
120 121
  Qed.

122
  Lemma ra_op_pos_valid2 t1 t2 t:
Ralf Jung's avatar
Ralf Jung committed
123
    t1 · t2 == ra_proj t ->  t2.
124
  Proof.
125
    rewrite comm. now eapply ra_op_pos_valid.
126 127 128 129
  Qed.

End PositiveCarrier.
Global Arguments ra_pos T {_}.
130
Tactic Notation "exists✓" constr(t) := let H := fresh "Hval" in assert(H:(t)%ra); [|exists (ra_mk_pos t (VAL:=H) ) ].
131 132 133 134 135 136


Section Order.
  Context T `{raT : RA T}.
  Local Open Scope ra_scope.

137 138
  Definition pra_ord (t1 t2 : ra_pos T) :=
    exists td, td · (ra_proj t1) == (ra_proj t2).
139

140
  Global Program Instance pRA_preo : preoType (ra_pos T) | 0 := mkPOType pra_ord.
141 142
  Next Obligation.
    split.
143 144
    - intros x; exists 1. simpl. erewrite ra_op_unit by apply _; reflexivity.
    - intros z yz xyz [y Hyz] [x Hxyz]; unfold pra_ord.
145
      rewrite <- Hyz, assoc in Hxyz; setoid_rewrite <- Hxyz.
146
      exists (x · y). reflexivity.
147 148
  Qed.

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  Global Instance equiv_pord_pra : Proper (equiv ==> equiv ==> equiv) (pord (T := ra_pos T)).
  Proof.
    intros s1 s2 EQs t1 t2 EQt; split; intros [s HS].
    - exists s; rewrite <- EQs, <- EQt; assumption.
    - exists s; rewrite EQs, EQt; assumption.
  Qed.

  Lemma unit_min r : ra_pos_unit  r.
  Proof.
    exists (ra_proj r). simpl.
    now erewrite ra_op_unit2 by apply _.
  Qed.

  Definition ra_ord (t1 t2 : T) :=
    exists t, t · t1 == t2.
  Global Program Instance ra_preo : preoType T := mkPOType ra_ord.
165 166
  Next Obligation.
    split.
167
    - intros r; exists 1; erewrite ra_op_unit by apply _; reflexivity.
168 169 170 171
    - intros z yz xyz [y Hyz] [x Hxyz]; exists (x · y).
      rewrite <- Hxyz, <- Hyz; symmetry; apply assoc.
  Qed.

172
  Global Instance equiv_pord_ra : Proper (equiv ==> equiv ==> equiv) (pord (T := T)).
173 174 175 176 177 178
  Proof.
    intros s1 s2 EQs t1 t2 EQt; split; intros [s HS].
    - exists s; rewrite <- EQs, <- EQt; assumption.
    - exists s; rewrite EQs, EQt; assumption.
  Qed.

179
  Global Instance ra_op_monic : Proper (pord ++> pord ++> pord) (ra_op _).
180
  Proof.
181
    intros x1 x2 [x EQx] y1 y2 [y EQy]. exists (x · y).
182 183 184 185
    rewrite <- assoc, (comm y), <- assoc, assoc, (comm y1), EQx, EQy; reflexivity.
  Qed.

  Lemma ord_res_optRes r s :
186
    (r  s) <-> (ra_proj r  ra_proj s).
187 188
  Proof.
    split; intros HR.
189 190
    - destruct HR as [d EQ]. exists d. assumption.
    - destruct HR as [d EQ]. exists d. assumption.
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  Qed.

End Order.

Section Exclusive.
  Context (T: Type) `{Setoid T}.
  Local Open Scope ra_scope.

  Inductive ra_res_ex: Type :=
  | ex_own: T -> ra_res_ex
  | ex_unit: ra_res_ex
  | ex_bot: ra_res_ex.

  Definition ra_res_ex_eq e1 e2: Prop :=
    match e1, e2 with
      | ex_own s1, ex_own s2 => s1 == s2
      | ex_unit, ex_unit => True
      | ex_bot, ex_bot => True
      | _, _ => False
    end.

  Global Program Instance ra_type_ex : Setoid ra_res_ex :=
    mkType ra_res_ex_eq.
  Next Obligation.
    split.
    - intros [t| |]; simpl; now auto.
    - intros [t1| |] [t2| |]; simpl; now auto.
    - intros [t1| |] [t2| |] [t3| |]; simpl; try now auto.
      + intros ? ?. etransitivity; eassumption.
  Qed.
      
  Global Instance ra_unit_ex : RA_unit ra_res_ex := ex_unit.
  Global Instance ra_op_ex : RA_op ra_res_ex :=
    fun e1 e2 =>
      match e1, e2 with
        | ex_own s1, ex_unit => ex_own s1
        | ex_unit, ex_own s2 => ex_own s2
        | ex_unit, ex_unit   => ex_unit
        | _, _               => ex_bot
      end.
  Global Instance ra_valid_ex : RA_valid ra_res_ex :=
    fun e => match e with
               | ex_bot => false
               | _      => true
             end.
  
  Global Instance ra_ex : RA ra_res_ex.
  Proof.
    split.
    - intros [t1| |] [t2| |] Heqt [t'1| |] [t'2| |] Heqt'; simpl; now auto.  
    - intros [s1| |] [s2| |] [s3| |]; reflexivity.
    - intros [s1| |] [s2| |]; reflexivity.
    - intros [s1| |]; reflexivity.
    - intros [t1| |] [t2| |] Heqt; unfold ra_valid; simpl in *; now auto.
    - reflexivity.
    - intros [t1| |] [t2| |]; unfold ra_valid; simpl; now auto.
  Qed.

End Exclusive.


(* Package of a monoid as a module type (for use with other modules). *)
Module Type RA_T.

  Parameter res : Type.
  Declare Instance res_type : Setoid res.
  Declare Instance res_op : RA_op res.
  Declare Instance res_unit : RA_unit res.
  Declare Instance res_valid : RA_valid res.
  Declare Instance res_ra : RA res.

End RA_T.