fin_maps.v 71.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From iris.prelude Require Export relations orders vector.
9
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)

(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
prove well founded recursion on finite maps. *)

(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)

Class FinMapToList K A M := map_to_list: M  list (K * A).

Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
31
    EqDecision K} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40 41 42
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
43
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
}.

(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
significant performance loss to make including them in the finite map interface
worthwhile. *)
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
  fold_right (λ p, <[p.1:=p.2]>) .
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).

Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).

74 75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
  λ m,  i x, m !! i = Some x  P i x.
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
Definition map_included `{ A, Lookup K A (M A)} {A}
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_included (=).

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
Instance map_difference `{Merge M} {A} : Difference (M A) :=
  difference_with (λ _ _, None).

(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

(** ** Setoids *)
Section setoid.
120 121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123
  Proof.
    split.
124 125
    - by intros m i.
    - by intros m1 m2 ? i.
126
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129 130 131
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134 135 136 137 138 139 140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141 142 143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144 145 146 147 148 149 150 151 152
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
153
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
154
    (() ==> () ==> ())%signature f g 
155
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
160
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162 163
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
164
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
165 166
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
167 168
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Qed.
170 171 172 173 174
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
175
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
176
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
177
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
178 179 180 181 182
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
End setoid.

(** ** General properties *)
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
  split; [intros m i; by destruct (m !! i); simpl|].
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
198
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
199
    done || etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
Qed.
Global Instance: PartialOrder (() : relation (M A)).
Proof.
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
Proof. rewrite !map_subseteq_spec. auto. Qed.
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
234 235
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

(** ** Properties of the [partial_alter] operation *)
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
Qed.
Lemma partial_alter_commute {A} f g (m : M A) i j :
  i  j  partial_alter f i (partial_alter g j m) =
    partial_alter g j (partial_alter f i m).
Proof.
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
258
  - by rewrite lookup_partial_alter,
Robbert Krebbers's avatar
Robbert Krebbers committed
259
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
260
  - by rewrite !lookup_partial_alter_ne by congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
Qed.
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
Proof. by apply partial_alter_self_alt. Qed.
Lemma partial_alter_subseteq {A} f (m : M A) i :
  m !! i = None  m  partial_alter f i m.
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
Lemma partial_alter_subset {A} f (m : M A) i :
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
Proof.
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
Qed.

(** ** Properties of the [alter] operation *)
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
288
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
Proof. unfold alter. apply lookup_partial_alter. Qed.
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
  destruct (decide (i = j)) as [->|?].
307
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
308
  - rewrite lookup_alter_ne by done. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310 311 312 313 314 315 316 317 318 319
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
Qed.
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
Proof.
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
320
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322 323 324 325 326 327 328 329 330 331 332
  by rewrite lookup_alter_ne by done.
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
333
  - destruct (decide (i = j)) as [->|?];
Robbert Krebbers's avatar
Robbert Krebbers committed
334
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
335
  - intros [??]. by rewrite lookup_delete_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
Qed.
337 338 339
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
340 341 342 343 344 345 346 347
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
348
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
Robbert Krebbers's avatar
Robbert Krebbers committed
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
Proof.
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
370 371
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
  m1  m2  delete i m1  delete i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
Proof.
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
Qed.
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
Proof. rewrite lookup_insert. congruence. Qed.
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
398 399
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400 401 402 403 404 405 406
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
407
  - destruct (decide (i = j)) as [->|?];
Robbert Krebbers's avatar
Robbert Krebbers committed
408
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
409
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Qed.
411 412 413
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Qed.
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
430 431
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
Qed.
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
Proof. apply partial_alter_subseteq. Qed.
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
Proof.
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
457 458
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
459 460 461 462 463 464 465 466 467 468 469 470
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
Proof.
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
  m1 !! i = None  <[i:=x]> m1  m2 
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
471
  intros Hi Hm1m2. exists (delete i m2). split_and?.
472 473
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
474 475
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
Qed.
477
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
Proof. done. Qed.
479 480 481 482
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
483 484 485

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
486
  {[i := x]} !! j = Some y  i = j  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
487
Proof.
488
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
489
Qed.
490
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
491
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
492
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
493
Proof. by rewrite lookup_singleton_Some. Qed.
494
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Proof. by rewrite lookup_singleton_None. Qed.
496
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
Robbert Krebbers's avatar
Robbert Krebbers committed
497 498 499 500
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
501
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
Proof.
503
  unfold singletonM, map_singleton, insert, map_insert.
Robbert Krebbers's avatar
Robbert Krebbers committed
504 505
  by rewrite <-partial_alter_compose.
Qed.
506
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
507 508
Proof.
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
509 510
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
511 512
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
513
  i  j  alter f i {[j := x]} = {[j := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
514 515 516 517
Proof.
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
Qed.
518 519
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
520 521 522 523 524 525

(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
526 527 528
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
529 530
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
531
Qed.
532 533 534 535 536 537
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
538 539 540 541
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
542 543
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
544
Qed.
545
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
546 547 548
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549
Lemma omap_singleton {A B} (f : A  option B) i x y :
550
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
551
Proof.
552 553
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
554 555 556 557 558 559
Qed.
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
560
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
561 562 563 564 565
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566 567 568 569 570 571
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572 573 574 575 576 577
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
578 579 580 581 582 583 584 585 586 587 588 589

(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
590
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
Robbert Krebbers's avatar
Robbert Krebbers committed
591
  destruct (decide (i = j)) as [->|].
592 593
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
Qed.
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
Proof.
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
  map_of_list l !! i = Some x  (i,x)  l.
Proof.
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
  i  l.*1  map_of_list l !! i = None.
Proof.
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
  map_of_list l !! i = None  i  l.*1.
Proof.
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
623
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
624 625
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  l.*1  map_of_list l !! i = None.
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
Proof.
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
    by auto using NoDup_fst_map_to_list.
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
Lemma map_to_list_inj {A} (m1 m2 : M A) :
  map_to_list m1  map_to_list m2  m1 = m2.
Proof.
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
663 664 665 666 667 668 669 670 671 672 673 674 675

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
676 677 678 679 680 681 682 683 684
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
Proof.
  intros. apply map_of_list_inj; csimpl.
685 686
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
687 688
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
    rewrite elem_of_map_to_list in Hlookup. congruence.
689
  - by rewrite !map_of_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
690
Qed.
691 692 693 694 695 696
Lemma map_to_list_singleton {A} i (x : A) : map_to_list {[i:=x]} = [(i,x)].
Proof.
  apply Permutation_singleton. unfold singletonM, map_singleton.
  by rewrite map_to_list_insert, map_to_list_empty by auto using lookup_empty.
Qed.

697 698 699 700 701 702
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
703 704 705 706 707 708 709 710 711 712
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
713 714 715 716
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
717 718 719 720 721
Lemma map_to_list_empty' {A} (m : M A) : map_to_list m = []  m = .
Proof.
  split. apply map_to_list_empty_inv. intros ->. apply map_to_list_empty.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
722 723 724 725 726 727 728 729 730 731
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
732

Robbert Krebbers's avatar
Robbert Krebbers committed
733 734 735 736
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
737
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
Robbert Krebbers's avatar
Robbert Krebbers committed
738 739
Qed.

740 741 742 743 744 745
Global Instance map_eq_dec_empty {A} (m : M A) : Decision (m = ) | 20.
Proof.
  refine (cast_if (decide (elements m = [])));
    [apply _|by rewrite <-?map_to_list_empty' ..].
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
746 747 748 749 750
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
751
  - destruct (m !! i) as [x|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
752 753
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
754
        [by apply elem_of_map_to_list|by simplify_option_eq]. }
Robbert Krebbers's avatar
Robbert Krebbers committed
755
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
756
    by rewrite elem_of_map_to_list in Hi'; simplify_option_eq.
757
  - apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
758
    intros ([i' x]&->&Hi'); simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
759
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
760
    rewrite elem_of_map_to_list in Hj; simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
761 762 763 764 765 766 767 768 769 770 771
Qed.

(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
772
    by intros (?&?&?&?&?); simplify_option_eq. }
Robbert Krebbers's avatar
Robbert Krebbers committed
773 774
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
775 776
  - intros (?&?&?); simplify_option_eq; eauto.
  - intros [??]; exists i; simplify_option_eq; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
777 778 779 780 781 782 783 784 785 786 787 788 789
Qed.

(** ** Induction principles *)
Lemma map_ind {A} (P : M A  Prop) :
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
Proof.
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
  { intros help m.
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
790 791
  - by apply not_elem_of_map_of_list_1.
  - apply IH; auto using map_to_of_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
Proof.
  apply (wf_projected (<) (length  map_to_list)).
808 809
  - by apply map_to_list_length.
  - by apply lt_wf.
Robbert Krebbers's avatar
Robbert Krebbers committed
810 811 812 813 814 815 816 817 818
Qed.

(** ** Properties of the [map_Forall] predicate *)
Section map_Forall.
Context {A} (P : K  A  Prop).

Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
Proof.
  rewrite Forall_forall. split.
819 820
  - intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  - intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
Robbert Krebbers's avatar
Robbert Krebbers committed
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
Qed.
Lemma map_Forall_empty : map_Forall P .
Proof. intros i x. by rewrite lookup_empty. Qed.
Lemma map_Forall_impl (Q : K  A  Prop) m :
  map_Forall P m  ( i x, P i x  Q i x)  map_Forall Q m.
Proof. unfold map_Forall; naive_solver. Qed.
Lemma map_Forall_insert_11 m i x : map_Forall P (<[i:=x]>m)  P i x.
Proof. intros Hm. by apply Hm; rewrite lookup_insert. Qed.
Lemma map_Forall_insert_12 m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  map_Forall P m.
Proof.
  intros ? Hm j y ?; apply Hm. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Forall_insert_2 m i x :
  P i x  map_Forall P m  map_Forall P (<[i:=x]>m).
Proof. intros ?? j y; rewrite lookup_insert_Some; naive_solver. Qed.
Lemma map_Forall_insert m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  P i x  map_Forall P m.
Proof.
  naive_solver eauto using map_Forall_insert_11,
    map_Forall_insert_12, map_Forall_insert_2.
Qed.
Lemma map_Forall_ind (Q : M A  Prop) :
  Q  
  ( m i x, m !! i = None  P i x  map_Forall P m  Q m  Q (<[i:=x]>m)) 
   m, map_Forall P m  Q m.
Proof.
  intros Hnil Hinsert m. induction m using map_ind; auto.
  rewrite map_Forall_insert by done; intros [??]; eauto.
Qed.

Context `{ i x, Decision (P i x)}.
Global Instance map_Forall_dec m : Decision (map_Forall P m).
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
    by rewrite map_Forall_to_list.
Defined.
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
Proof.
  split; [|intros (i&x&?&?) Hm; specialize (Hm i x); tauto].
  rewrite map_Forall_to_list. intros Hm.
  apply (not_Forall_Exists _), Exists_exists in Hm.
864
  destruct Hm as ([i x]&?&?). exists i, x. by rewrite <-elem_of_map_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
865 866 867 868 869
Qed.
End map_Forall.

(** ** Properties of the [merge] operation *)
Section merge.
870
Context {A} (f : option A  option A  option A) `{!DiagNone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
871 872 873 874 875 876 877 878 879 880
Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
Qed.
881
Lemma merge_comm m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
882 883 884
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
885 886
Global Instance merge_comm' : Comm (=) f  Comm (=) (merge f).
Proof. intros ???. apply merge_comm. intros. by apply (comm f). Qed.
887
Lemma merge_assoc m1 m2 m3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
888 889 890 891
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
892 893
Global Instance merge_assoc' : Assoc (=) f  Assoc (=) (merge f).
Proof. intros ????. apply merge_assoc. intros. by apply (assoc_L f). Qed.
894
Lemma merge_idemp m1 :
Robbert Krebbers's avatar
Robbert Krebbers committed
895 896
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
897
Global Instance merge_idemp' : IdemP (=) f  IdemP (=) (merge f).
898
Proof. intros ??. apply merge_idemp. intros. by apply (idemp f). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
899 900 901
End merge.

Section more_merge.
902 903
Context {A B C} (f : option A  option B  option C) `{!DiagNone f}.

Robbert Krebbers's avatar
Robbert Krebbers committed
904 905 906 907 908 909 910 911 912 913 914 915 916 917
Lemma merge_Some m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
Qed.
Lemma merge_empty : merge f   = .
Proof. apply map_eq. intros. by rewrite !(lookup_merge f), !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
918 919
  - by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  - by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Robbert Krebbers's avatar
Robbert Krebbers committed
920 921 922 923 924 925
Qed.
Lemma partial_alter_merge_l g g1 m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
926 927
  - by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  - by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Robbert Krebbers's avatar
Robbert Krebbers committed
928 929 930 931 932 933
Qed.
Lemma partial_alter_merge_r g g2 m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
934 935
  - by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  - by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Robbert Krebbers's avatar
Robbert Krebbers committed
936 937 938 939 940 941
Qed.
Lemma insert_merge m1 m2 i x y z :
  f (Some y) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge. Qed.
Lemma merge_singleton i x y z :
942
  f (Some y) (Some z) = Some x  merge f {[i := y]} {[i := z]} = {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
943
Proof.
944
  intros. by erewrite <-!insert_empty, <-insert_merge, merge_empty by eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
Qed.
Lemma insert_merge_l m1 m2 i x y :
  f (Some y) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) m2.
Proof. by intros; apply partial_alter_merge_l. Qed.
Lemma insert_merge_r m1 m2 i x z :
  f (m1 !! i) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge_r. Qed.
End more_merge.

(** ** Properties on the [map_relation] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_relation_alt (m1 : M A) (m2 : M B) :
  map_relation R P Q m1 m2  map_Forall (λ _, Is_true) (merge f m1 m2).
Proof.
  split.
972
  - intros Hm i P'; rewrite lookup_merge by done; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
973
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
974
      simplify_eq/=; auto using bool_decide_pack.
975
  - intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
976
    destruct (m1 !! i), (m2 !! i); simplify_eq/=; auto;
Robbert Krebbers's avatar
Robbert Krebbers committed
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_relation_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_relation R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _, Is_true) (merge f m1 m2))));
    abstract by rewrite map_relation_alt.
Defined.
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_relation R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
Proof.
  split.
994
  - rewrite map_relation_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
Robbert Krebbers's avatar
Robbert Krebbers committed
995 996
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
997
  - unfold map_relation, option_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
998
    by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
999
      specialize (Hm i); simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
Qed.
End Forall2.

(** ** Properties on the disjoint maps *)
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1  m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
Qed.
1023
Global Instance map_disjoint_sym : Symmetric (map_disjoint : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_disjoint_empty_r {A} (m : M A) : m  .
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
  m1'  m2'  m1  m1'  m2  m2'  m1  m2.
Proof. rewrite !map_subseteq_spec, !map_disjoint_spec. eauto. Qed.
Lemma map_disjoint_weaken_l {A} (m1 m1' m2  : M A) :
  m1'  m2  m1  m1'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
  m1  m2'  m2  m2'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
  m1  m2  m1 !! i = Some x  m2 !! i = None.
Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed.
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
  m1  m2  m2 !! i = Some x  m1 !! i = None.
Proof. rewrite (symmetry_iff map_disjoint). apply map_disjoint_Some_l. Qed.
1044
Lemma map_disjoint_singleton_l {A} (m: M A) i x : {[i:=x]}  m  m !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
1045 1046
Proof.
  split; [|rewrite !map_disjoint_spec].
1047
  - intro. apply (map_disjoint_Some_l {[i := x]} _ _ x);
Robbert Krebbers's avatar
Robbert Krebbers committed
1048
      auto using lookup_singleton.
1049
  - intros ? j y1 y2. destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
1050 1051 1052 1053
    + rewrite lookup_singleton. intuition congruence.
    + by rewrite lookup_singleton_ne.
Qed.
Lemma map_disjoint_singleton_r {A} (m : M A) i x :
1054
  m  {[i := x]}  m !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
1055 1056
Proof. by rewrite (symmetry_iff map_disjoint), map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_l_2 {A} (m : M A) i x :
1057
  m !! i = None  {[i := x]}  m.
Robbert Krebbers's avatar
Robbert Krebbers committed
1058 1059
Proof. by rewrite map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_r_2 {A} (m : M A) i x :
1060
  m !! i = None  m  {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
Proof. by rewrite map_disjoint_singleton_r. Qed.
Lemma map_disjoint_delete_l {A} (m1 m2 : M A) i : m1  m2  delete i m1  m2.
Proof.
  rewrite !map_disjoint_alt. intros Hdisjoint j. destruct (Hdisjoint j); auto.
  rewrite lookup_delete_None. tauto.
Qed.
Lemma map_disjoint_delete_r {A} (m1 m2 : M A) i : m1  m2  m1  delete i m2.
Proof. symmetry. by apply map_disjoint_delete_l. Qed.

(** ** Properties of the [union_with] operation *)
Section union_with.
Context {A} (f : A  A  option A).

Lemma lookup_union_with m1 m2 i :
  union_with f m1 m2 !! i = union_with f (m1 !! i) (m2 !! i).
Proof. by rewrite <-(lookup_merge _). Qed.
Lemma lookup_union_with_Some m1 m2 i z :
  union_with f m1 m2 !! i = Some z 
    (m1 !! i = Some z  m2 !! i = None) 
    (m1 !! i = None  m2 !! i = Some z) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  f x y = Some z).
Proof.
  rewrite lookup_union_with.
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Global Instance: LeftId (@eq (M A))  (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
Global Instance: RightId (@eq (M A))  (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
1090
Lemma union_with_comm m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
1091 1092 1093
  ( i x y, m1 !! i = Some x  m2 !! i = Some y  f x y = f y x) 
  union_with f m1 m2 = union_with f m2 m1.
Proof.
1094
  intros. apply (merge_comm _). intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
1095 1096
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
1097 1098 1099
Global Instance: Comm (=) f  Comm (@eq (M A)) (union_with f).
Proof. intros ???. apply union_with_comm. eauto. Qed.
Lemma union_with_idemp m :
Robbert Krebbers's avatar
Robbert Krebbers committed
1100 1101
  ( i x, m !! i = Some x  f x x = Some x)  union_with f m m = m.
Proof.