pviewshifts.v 10.6 KB
Newer Older
1 2 3
From iris.prelude Require Export co_pset.
From iris.program_logic Require Export model.
From iris.program_logic Require Import ownership wsat.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
Local Hint Extern 10 (_  _) => omega.
5 6
Local Hint Extern 100 (@eq coPset _ _) => set_solver.
Local Hint Extern 100 (_  _) => set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Local Hint Extern 10 ({_} _) =>
8 9 10
  repeat match goal with
  | H : wsat _ _ _ _ |- _ => apply wsat_valid in H; last omega
  end; solve_validN.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

Ralf Jung's avatar
Ralf Jung committed
12
Program Definition pvs_def {Λ Σ} (E1 E2 : coPset) (P : iProp Λ Σ) : iProp Λ Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
13
  {| uPred_holds n r1 :=  rf k Ef σ,
14
       0 < k  n  (E1  E2)  Ef =  
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17
       wsat k (E1  Ef) σ (r1  rf) 
        r2, P k r2  wsat k (E2  Ef) σ (r2  rf) |}.
Next Obligation.
18
  intros Λ Σ E1 E2 P r1 r2 n HP Hr rf k Ef σ ?? Hwsat; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
19 20 21
  apply HP; auto. by rewrite (dist_le _ _ _ _ Hr); last lia.
Qed.
Next Obligation.
22
  intros Λ Σ E1 E2 P r1 r2 n1 n2 HP [r3 ?] Hn ? rf k Ef σ ?? Hws; setoid_subst.
23 24
  destruct (HP (r3rf) k Ef σ) as (r'&?&Hws'); rewrite ?(assoc op); auto.
  exists (r'  r3); rewrite -assoc; split; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  apply uPred_weaken with k r'; eauto using cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Qed.
Ralf Jung's avatar
Ralf Jung committed
27 28 29 30 31 32

Definition pvs_aux : { x | x = @pvs_def }. by eexists. Qed.
Definition pvs := proj1_sig pvs_aux.
Definition pvs_eq : @pvs = @pvs_def := proj2_sig pvs_aux.

Arguments pvs {_ _} _ _ _%I.
33
Instance: Params (@pvs) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
34

35 36 37 38 39 40
Notation "|={ E1 , E2 }=> Q" := (pvs E1 E2 Q%I)
  (at level 199, E1, E2 at level 50, Q at level 200,
   format "|={ E1 , E2 }=>  Q") : uPred_scope.
Notation "|={ E }=> Q" := (pvs E E Q%I)
  (at level 199, E at level 50, Q at level 200,
   format "|={ E }=>  Q") : uPred_scope.
41 42
Notation "|==> Q" := (pvs   Q%I)
  (at level 199, Q at level 200, format "|==>  Q") : uPred_scope.
43

Robbert Krebbers's avatar
Robbert Krebbers committed
44
Section pvs.
45
Context {Λ : language} {Σ : iFunctor}.
46 47
Implicit Types P Q : iProp Λ Σ.
Implicit Types m : iGst Λ Σ.
Robbert Krebbers's avatar
Robbert Krebbers committed
48

49 50 51
Lemma pvs_zero E1 E2 P r : pvs_def E1 E2 P 0 r.
Proof. intros ?????. exfalso. omega. Qed.

52
Global Instance pvs_ne E1 E2 n : Proper (dist n ==> dist n) (@pvs Λ Σ E1 E2).
Robbert Krebbers's avatar
Robbert Krebbers committed
53
Proof.
Ralf Jung's avatar
Ralf Jung committed
54
  rewrite pvs_eq.
55
  intros P Q HPQ; split=> n' r1 ??; simpl; split; intros HP rf k Ef σ ???;
Robbert Krebbers's avatar
Robbert Krebbers committed
56
    destruct (HP rf k Ef σ) as (r2&?&?); auto;
57
    exists r2; split_and?; auto; apply HPQ; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
58
Qed.
59
Global Instance pvs_proper E1 E2 : Proper (() ==> ()) (@pvs Λ Σ E1 E2).
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61
Proof. apply ne_proper, _. Qed.

62
Lemma pvs_intro E P : P  |={E}=> P.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof.
Ralf Jung's avatar
Ralf Jung committed
64
  rewrite pvs_eq. split=> n r ? HP rf k Ef σ ???; exists r; split; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  apply uPred_weaken with n r; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Qed.
67
Lemma pvs_mono E1 E2 P Q : P  Q  (|={E1,E2}=> P)  (|={E1,E2}=> Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
68
Proof.
Ralf Jung's avatar
Ralf Jung committed
69
  rewrite pvs_eq. intros HPQ; split=> n r ? HP rf k Ef σ ???.
70 71
  destruct (HP rf k Ef σ) as (r2&?&?); eauto.
  exists r2; eauto using uPred_in_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Qed.
73
Lemma pvs_timeless E P : TimelessP P  ( P)  (|={E}=> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Proof.
Ralf Jung's avatar
Ralf Jung committed
75
  rewrite pvs_eq uPred.timelessP_spec=> HP.
76
  uPred.unseal; split=>-[|n] r ? HP' rf k Ef σ ???; first lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  exists r; split; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
  apply HP, uPred_weaken with n r; eauto using cmra_validN_le.
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80
Qed.
Lemma pvs_trans E1 E2 E3 P :
81
  E2  E1  E3  (|={E1,E2}=> |={E2,E3}=> P)  (|={E1,E3}=> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Proof.
Ralf Jung's avatar
Ralf Jung committed
83
  rewrite pvs_eq. intros ?; split=> n r1 ? HP1 rf k Ef σ ???.
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85 86
  destruct (HP1 rf k Ef σ) as (r2&HP2&?); auto.
Qed.
Lemma pvs_mask_frame E1 E2 Ef P :
87
  Ef  (E1  E2) =   (|={E1,E2}=> P)  (|={E1  Ef,E2  Ef}=> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Proof.
Ralf Jung's avatar
Ralf Jung committed
89
  rewrite pvs_eq. intros ?; split=> n r ? HP rf k Ef' σ ???.
90 91
  destruct (HP rf k (EfEf') σ) as (r'&?&?); rewrite ?(assoc_L _); eauto.
  by exists r'; rewrite -(assoc_L _).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
Qed.
93
Lemma pvs_frame_r E1 E2 P Q : ((|={E1,E2}=> P)  Q)  (|={E1,E2}=> P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
Proof.
Ralf Jung's avatar
Ralf Jung committed
95
  rewrite pvs_eq. uPred.unseal; split; intros n r ? (r1&r2&Hr&HP&?) rf k Ef σ ???.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  destruct (HP (r2  rf) k Ef σ) as (r'&?&?); eauto.
97 98
  { by rewrite assoc -(dist_le _ _ _ _ Hr); last lia. }
  exists (r'  r2); split; last by rewrite -assoc.
99
  exists r', r2; split_and?; auto; apply uPred_weaken with n r2; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
100
Qed.
101
Lemma pvs_openI i P : ownI i P  (|={{[i]},}=>  P).
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Proof.
Ralf Jung's avatar
Ralf Jung committed
103
  rewrite pvs_eq. uPred.unseal; split=> -[|n] r ? Hinv rf [|k] Ef σ ???; try lia.
104
  apply ownI_spec in Hinv; last auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106
  destruct (wsat_open k Ef σ (r  rf) i P) as (rP&?&?); auto.
  { rewrite lookup_wld_op_l ?Hinv; eauto; apply dist_le with (S n); eauto. }
107
  exists (rP  r); split; last by rewrite (left_id_L _ _) -assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
  eapply uPred_weaken with (S k) rP; eauto using cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Qed.
110
Lemma pvs_closeI i P : (ownI i P   P)  (|={,{[i]}}=> True).
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Proof.
Ralf Jung's avatar
Ralf Jung committed
112
  rewrite pvs_eq. uPred.unseal; split=> -[|n] r ? [? HP] rf [|k] Ef σ ? HE ?; try lia.
113
  exists ; split; [done|].
114
  rewrite left_id; apply wsat_close with P r.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
  - apply ownI_spec, uPred_weaken with (S n) r; auto.
116
  - set_solver +HE.
117
  - by rewrite -(left_id_L  () Ef).
Robbert Krebbers's avatar
Robbert Krebbers committed
118
  - apply uPred_weaken with n r; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
Qed.
120
Lemma pvs_ownG_updateP E m (P : iGst Λ Σ  Prop) :
121
  m ~~>: P  ownG m  (|={E}=>  m',  P m'  ownG m').
Robbert Krebbers's avatar
Robbert Krebbers committed
122
Proof.
123
  rewrite pvs_eq. intros Hup.
124
  uPred.unseal; split=> -[|n] r ? /ownG_spec Hinv rf [|k] Ef σ ???; try lia.
125
  destruct (wsat_update_gst k (E  Ef) σ r rf m P) as (m'&?&?); eauto.
126
  { apply cmra_includedN_le with (S n); auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128
  by exists (update_gst m' r); split; [exists m'; split; [|apply ownG_spec]|].
Qed.
129
Lemma pvs_allocI E P : ¬set_finite E   P  (|={E}=>  i,  (i  E)  ownI i P).
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Proof.
Ralf Jung's avatar
Ralf Jung committed
131
  rewrite pvs_eq. intros ?; rewrite /ownI; uPred.unseal.
132
  split=> -[|n] r ? HP rf [|k] Ef σ ???; try lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
  destruct (wsat_alloc k E Ef σ rf P r) as (i&?&?&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  { apply uPred_weaken with n r; eauto. }
135
  exists (Res {[ i := to_agree (Next (iProp_unfold P)) ]}  ).
136
  split; [|done]. by exists i; split; rewrite /uPred_holds /=.
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
Qed.

139
(** * Derived rules *)
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Import uPred.
141
Global Instance pvs_mono' E1 E2 : Proper (() ==> ()) (@pvs Λ Σ E1 E2).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Proof. intros P Q; apply pvs_mono. Qed.
143
Global Instance pvs_flip_mono' E1 E2 :
144
  Proper (flip () ==> flip ()) (@pvs Λ Σ E1 E2).
145
Proof. intros P Q; apply pvs_mono. Qed.
146
Lemma pvs_trans' E P : (|={E}=> |={E}=> P)  (|={E}=> P).
147
Proof. apply pvs_trans; set_solver. Qed.
148
Lemma pvs_strip_pvs E P Q : P  (|={E}=> Q)  (|={E}=> P)  (|={E}=> Q).
149
Proof. move=>->. by rewrite pvs_trans'. Qed.
150
Lemma pvs_frame_l E1 E2 P Q : (P  |={E1,E2}=> Q)  (|={E1,E2}=> P  Q).
151
Proof. rewrite !(comm _ P); apply pvs_frame_r. Qed.
152
Lemma pvs_always_l E1 E2 P Q `{!PersistentP P} :
153
  (P  |={E1,E2}=> Q)  (|={E1,E2}=> P  Q).
154
Proof. by rewrite !always_and_sep_l pvs_frame_l. Qed.
155
Lemma pvs_always_r E1 E2 P Q `{!PersistentP Q} :
156
  ((|={E1,E2}=> P)  Q)  (|={E1,E2}=> P  Q).
157
Proof. by rewrite !always_and_sep_r pvs_frame_r. Qed.
158
Lemma pvs_impl_l E1 E2 P Q : ( (P  Q)  (|={E1,E2}=> P))  (|={E1,E2}=> Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
159
Proof. by rewrite pvs_always_l always_elim impl_elim_l. Qed.
160
Lemma pvs_impl_r E1 E2 P Q : ((|={E1,E2}=> P)   (P  Q))  (|={E1,E2}=> Q).
161
Proof. by rewrite comm pvs_impl_l. Qed.
162
Lemma pvs_wand_l E1 E2 P Q R :
163
  P  (|={E1,E2}=> Q)  ((Q - R)  P)  (|={E1,E2}=> R).
164
Proof. intros ->. rewrite pvs_frame_l. apply pvs_mono, wand_elim_l. Qed.
165
Lemma pvs_wand_r E1 E2 P Q R :
166
  P  (|={E1,E2}=> Q)  (P  (Q - R))  (|={E1,E2}=> R).
167
Proof. rewrite comm. apply pvs_wand_l. Qed.
Ralf Jung's avatar
Ralf Jung committed
168
Lemma pvs_sep E P Q:
169
  ((|={E}=> P)  (|={E}=> Q))  (|={E}=> P  Q).
Ralf Jung's avatar
Ralf Jung committed
170
Proof. rewrite pvs_frame_r pvs_frame_l pvs_trans //. set_solver. Qed.
Ralf Jung's avatar
Ralf Jung committed
171

172
Lemma pvs_mask_frame' E1 E1' E2 E2' P :
173
  E1'  E1  E2'  E2  E1  E1' = E2  E2' 
174
  (|={E1',E2'}=> P)  (|={E1,E2}=> P).
175
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  intros HE1 HE2 HEE.
177
  rewrite (pvs_mask_frame _ _ (E1  E1')); last set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
  by rewrite {2}HEE -!union_difference_L.
179
Qed.
Ralf Jung's avatar
Ralf Jung committed
180 181 182

Lemma pvs_mask_frame_mono E1 E1' E2 E2' P Q :
  E1'  E1  E2'  E2  E1  E1' = E2  E2' 
183
  P  Q  (|={E1',E2'}=> P)  (|={E1,E2}=> Q).
Ralf Jung's avatar
Ralf Jung committed
184 185
Proof. intros HE1 HE2 HEE ->. by apply pvs_mask_frame'. Qed.

186
(** It should be possible to give a stronger version of this rule
Ralf Jung's avatar
Ralf Jung committed
187 188
   that does not force the conclusion view shift to have twice the
   same mask. However, even expressing the side-conditions on the
189
   mask becomes really ugly then, and we have not found an instance
Ralf Jung's avatar
Ralf Jung committed
190
   where that would be useful. *)
Ralf Jung's avatar
Ralf Jung committed
191
Lemma pvs_trans3 E1 E2 Q :
192
  E2  E1  (|={E1,E2}=> |={E2}=> |={E2,E1}=> Q)  (|={E1}=> Q).
193
Proof. intros HE. rewrite !pvs_trans; set_solver. Qed.
Ralf Jung's avatar
Ralf Jung committed
194

195
Lemma pvs_mask_weaken E1 E2 P : E1  E2  (|={E1}=> P)  (|={E2}=> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
196
Proof. auto using pvs_mask_frame'. Qed.
Ralf Jung's avatar
Ralf Jung committed
197

198
Lemma pvs_ownG_update E m m' : m ~~> m'  ownG m  (|={E}=> ownG m').
Robbert Krebbers's avatar
Robbert Krebbers committed
199
Proof.
200
  intros; rewrite (pvs_ownG_updateP E _ (m' =)); last by apply cmra_update_updateP.
Robbert Krebbers's avatar
Robbert Krebbers committed
201 202 203
  by apply pvs_mono, uPred.exist_elim=> m''; apply uPred.const_elim_l=> ->.
Qed.
End pvs.
204 205 206 207 208 209

(** * Frame Shift Assertions. *)
(* Yes, the name is horrible...
   Frame Shift Assertions take a mask and a predicate over some type (that's
   their "postcondition"). They support weakening the mask, framing resources
   into the postcondition, and composition witn mask-changing view shifts. *)
210 211
Notation FSA Λ Σ A := (coPset  (A  iProp Λ Σ)  iProp Λ Σ).
Class FrameShiftAssertion {Λ Σ A} (fsaV : Prop) (fsa : FSA Λ Σ A) := {
212
  fsa_mask_frame_mono E1 E2 Φ Ψ :
213 214
    E1  E2  ( a, Φ a  Ψ a)  fsa E1 Φ  fsa E2 Ψ;
  fsa_trans3 E Φ : (|={E}=> fsa E (λ a, |={E}=> Φ a))  fsa E Φ;
215
  fsa_open_close E1 E2 Φ :
216 217
    fsaV  E2  E1  (|={E1,E2}=> fsa E2 (λ a, |={E2,E1}=> Φ a))  fsa E1 Φ;
  fsa_frame_r E P Φ : (fsa E Φ  P)  fsa E (λ a, Φ a  P)
218 219
}.

220 221
Section fsa.
Context {Λ Σ A} (fsa : FSA Λ Σ A) `{!FrameShiftAssertion fsaV fsa}.
222
Implicit Types Φ Ψ : A  iProp Λ Σ.
223

224
Lemma fsa_mono E Φ Ψ : ( a, Φ a  Ψ a)  fsa E Φ  fsa E Ψ.
225
Proof. apply fsa_mask_frame_mono; auto. Qed.
226
Lemma fsa_mask_weaken E1 E2 Φ : E1  E2  fsa E1 Φ  fsa E2 Φ.
227
Proof. intros. apply fsa_mask_frame_mono; auto. Qed.
228
Lemma fsa_frame_l E P Φ : (P  fsa E Φ)  fsa E (λ a, P  Φ a).
229
Proof. rewrite comm fsa_frame_r. apply fsa_mono=>a. by rewrite comm. Qed.
230
Lemma fsa_strip_pvs E P Φ : P  fsa E Φ  (|={E}=> P)  fsa E Φ.
231
Proof.
232 233
  move=>->. rewrite -{2}fsa_trans3.
  apply pvs_mono, fsa_mono=>a; apply pvs_intro.
234
Qed.
235
Lemma fsa_mono_pvs E Φ Ψ : ( a, Φ a  (|={E}=> Ψ a))  fsa E Φ  fsa E Ψ.
236
Proof. intros. rewrite -[fsa E Ψ]fsa_trans3 -pvs_intro. by apply fsa_mono. Qed.
237 238
End fsa.

239
Definition pvs_fsa {Λ Σ} : FSA Λ Σ () := λ E Φ, (|={E}=> Φ ())%I.
240
Instance pvs_fsa_prf {Λ Σ} : FrameShiftAssertion True (@pvs_fsa Λ Σ).
241
Proof.
242 243
  rewrite /pvs_fsa.
  split; auto using pvs_mask_frame_mono, pvs_trans3, pvs_frame_r.
244
Qed.
245 246

Lemma pvs_mk_fsa {Λ Σ} E (P Q : iProp Λ Σ) :
247 248
  P  pvs_fsa E (λ _, Q) 
  P  |={E}=> Q.
249
Proof. by intros ?. Qed.