collections.v 31.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From iris.prelude Require Export base tactics orders.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9

Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
10
Typeclasses Opaque collection_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12 13 14

(** * Basic theorems *)
Section simple_collection.
  Context `{SimpleCollection A C}.
15 16
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20 21 22 23 24 25 26 27

  Lemma elem_of_empty x : x    False.
  Proof. split. apply not_elem_of_empty. done. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
52 53
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
  Qed.
55
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  Proof. by repeat intro; subst. Qed.
57 58
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
59 60 61 62
  Proof. intros ???; subst. firstorder. Qed.
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
  Proof.
    split.
63
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
Robbert Krebbers's avatar
Robbert Krebbers committed
64
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
65
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
Robbert Krebbers's avatar
Robbert Krebbers committed
66 67
      intros. apply elem_of_union_r; auto.
  Qed.
68
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
Robbert Krebbers's avatar
Robbert Krebbers committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
End simple_collection.

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
268
  try fast_done;
269 270 271 272 273 274 275 276 277 278 279 280 281
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

282 283 284 285
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

286 287 288
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Robbert Krebbers's avatar
Robbert Krebbers committed
289 290 291 292 293
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
294 295
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296 297 298
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
299
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
300
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
301
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
  Qed.
303 304 305
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
306 307 308
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310
End of_option_list.

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
327 328 329 330
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
331 332
End list_unfold.

333
(** * Guard *)
Robbert Krebbers's avatar
Robbert Krebbers committed
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
353 354 355
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
358
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
359 360 361 362 363
End collection_monad_base.

(** * More theorems *)
Section collection.
  Context `{Collection A C}.
364
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
365 366

  Global Instance: Lattice C.
367
  Proof. split. apply _. firstorder auto. set_solver. Qed.
368 369
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
370 371 372 373
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
374
  Lemma non_empty_inhabited x X : x  X  X  .
375
  Proof. set_solver. Qed.
376
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
377
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
379
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
381
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  Lemma difference_diag X : X  X  .
383
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
385
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
387
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
389
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
391
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410 411
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
412 413 414
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
    Context `{ (x : A) (X : C), Decision (x  X)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
416 417 418 419 420 421 422 423 424 425
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
426
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
428
    Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
447
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
Robbert Krebbers's avatar
Robbert Krebbers committed
448 449
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
450
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
451
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
452
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
453 454 455 456 457 458 459 460 461
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
462
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
End collection_ops.

(** * Sets without duplicates up to an equivalence *)
Section NoDup.
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
480 481
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
482 483 484 485 486
  Qed.
  Global Instance: Proper (() ==> iff) set_NoDup.
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
487
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
489
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
491
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493 494

  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
495
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
497
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498 499

  Lemma set_NoDup_empty: set_NoDup .
500
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501 502
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
503
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504 505 506 507
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
  Proof.
    intros Hin Hnodup [y [??]].
508
    rewrite (Hnodup x y) in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
509 510
  Qed.
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
511
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
513
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
514 515 516 517 518 519 520 521 522 523
End NoDup.

(** * Quantifiers *)
Section quantifiers.
  Context `{SimpleCollection A B} (P : A  Prop).

  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
524
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
525
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
526
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
527
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
528
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
530
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
531
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
532
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533 534

  Lemma set_Exists_empty : ¬set_Exists .
535
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
536
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
537
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
538
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
539
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
540
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
541
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
542 543
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
544
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
End quantifiers.

Section more_quantifiers.
  Context `{SimpleCollection A B}.

  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.

(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).

Section fresh.
  Context `{FreshSpec A C}.
574
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
575

576
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
577
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
578 579
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
580
  Proof.
581
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
Robbert Krebbers's avatar
Robbert Krebbers committed
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    apply IH. by rewrite E.
  Qed.

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
601
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
602 603 604 605 606 607 608

  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
  Proof.
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
609
    apply IH in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
610 611 612 613
  Qed.
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
  Proof.
    revert X. induction n; simpl; constructor; auto.
614
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
615 616 617 618 619 620 621 622 623 624 625
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
  Qed.
End fresh.

(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
  Context `{CollectionMonad M}.

626 627
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
628
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
629 630
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
631
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
632 633
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
634
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
635 636
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
637
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
638 639
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
640
  Proof. intros X Y ?; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
641 642
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
643
  Proof. intros X Y [??]; split; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
644 645

  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
646
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
647
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
648
  Proof. set_solver. Qed.
649
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
650
    g  f <$> X  g <$> (f <$> X).
651
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
652 653
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
654
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
655 656
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
657
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
658 659
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
660
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
661 662 663 664 665

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
666
    - revert l. induction k; set_solver by eauto.
667
    - induction 1; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
668 669 670
  Qed.
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
    l  mapM f k  length l = length k.
671
  Proof. revert l; induction k; set_solver by eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
672 673
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
674
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
675 676 677 678 679 680 681 682 683 684 685
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
End collection_monad.
686 687 688 689 690 691

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
692 693
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
694
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
695 696
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
697 698 699
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
700
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
701 702 703 704 705 706
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
707
  Proof. intros [l ?]; exists l; set_solver. Qed.
708
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
709
  Proof. intros [l ?]; exists l; set_solver. Qed.
710 711 712 713 714
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
715
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
716
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
717
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
718
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
719
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
720 721 722 723
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
724
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
725
  Qed.
726
End more_finite.