logic.tex 23.5 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{()})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, ()$. \\
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr'$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr'$ is forked off.
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
\item There is a predicate defining \emph{atomic} expressions satisfying
\let\oldcr\cr
\begin{mathpar}
  {\All\expr. \atomic(\expr) \Ra \toval(\expr) = \bot} \and
  {{
    \begin{inbox}
\All\expr_1, \state_1, \expr_2, \state_2, \expr'. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr' \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
    \end{inbox}
}}
\end{mathpar}
In other words, atomic expression \emph{reduce in one step to a value}.
It does not matter whether they fork off an arbitrary expression.
25 26
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
27
\begin{defn}[Context]
Ralf Jung's avatar
Ralf Jung committed
28 29 30 31 32 33 34 35 36
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
  \begin{enumerate}
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
    $\All \expr_1, \state_1, \expr_2, \state_2, \expr'. \expr_1, \state_1 \step \expr_2,\state_2,\expr' \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr' $
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
    $\All \expr_1', \state_1, \expr_2, \state_2, \expr'. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr' \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr' $
  \end{enumerate}
Ralf Jung's avatar
Ralf Jung committed
37 38
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
39 40 41
\subsection{The concurrent language}

For any language $\Lang$, we define the corresponding thread-pool semantics.
42 43 44

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
45
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
46 47
\]

Ralf Jung's avatar
Ralf Jung committed
48 49
\judgment{Machine reduction} {\cfg{\tpool}{\state} \step
  \cfg{\tpool'}{\state'}}
50 51
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
52 53 54 55 56 57 58
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr' \and \expr' \neq ()}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr']}{\state'}}
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
59 60
\end{mathpar}

61
\clearpage
Ralf Jung's avatar
Ralf Jung committed
62 63 64 65 66 67
\section{The logic}

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
\item A language $\Lang$
\item A locally contractive functor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state
Ralf Jung's avatar
Ralf Jung committed
68
  \ralf{$\iFunc$ also needs to have a single-unit.}
Ralf Jung's avatar
Ralf Jung committed
69
\end{itemize}
70

Ralf Jung's avatar
Ralf Jung committed
71 72 73
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
74
\[
Ralf Jung's avatar
Ralf Jung committed
75
	\SigType \supseteq \{ \textsort{Val}, \textsort{Expr}, \textsort{State}, \textsort{M}, \textsort{InvName}, \textsort{InvMask}, \Prop \}
76
\]
Ralf Jung's avatar
Ralf Jung committed
77 78 79
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
80 81 82 83 84
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
85 86 87 88 89 90

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
91 92

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
93
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
94

95
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
96 97 98 99 100 101
  \type ::={}&
      \sigtype \mid
      \unitsort \mid
      \type \times \type \mid
      \type \to \type
\\[0.4em]
102
  \term, \prop, \pred ::={}&
103
      \var \mid
104
      \sigfn(\term_1, \dots, \term_n) \mid
105
      \unitval \mid
106 107
      (\term, \term) \mid
      \pi_i\; \term \mid
108
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
109
      \term(\term)  \mid
110 111 112 113 114
      \munit \mid
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
115
    \term =_\type \term \mid
116 117 118 119 120 121
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
122
    \MU \var:\type. \pred  \mid
Ralf Jung's avatar
Ralf Jung committed
123 124
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
125 126 127 128 129 130
\\&
    \knowInv{\term}{\prop} \mid
    \ownGGhost{\term} \mid
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
131
    \pvs[\term][\term] \prop\mid
Ralf Jung's avatar
Ralf Jung committed
132
    \wpre{\term}{\Ret\var.\term}[\term]
133
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
134
Recursive predicates must be \emph{guarded}: in $\MU \var. \pred$, the variable $\var$ can only appear under the later $\later$ modality.
135

136
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
Ralf Jung's avatar
Ralf Jung committed
137
We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
138

139
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
140
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
141 142
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
143
 \text{metavariable} & \text{type} \\\hline
144 145
  \term, \termB & \text{arbitrary} \\
  \val, \valB & \textsort{Val} \\
Ralf Jung's avatar
Ralf Jung committed
146
  \expr & \textsort{Expr} \\
147 148 149 150
  \state & \textsort{State} \\
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
151
 \text{metavariable} & \text{type} \\\hline
152 153
  \iname & \textsort{InvName} \\
  \mask & \textsort{InvMask} \\
Ralf Jung's avatar
Ralf Jung committed
154
  \melt, \meltB & \textsort{M} \\
155
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
156
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
157 158 159 160
\end{array}
\]

\paragraph{Variable conventions.}
161
We often abuse notation, using the preceding \emph{term} meta-variables to range over (bound) \emph{variables}.
162
We omit type annotations in binders, when the type is clear from context.
Ralf Jung's avatar
Ralf Jung committed
163
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
164 165 166 167 168


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
169
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
170

Ralf Jung's avatar
Ralf Jung committed
171 172
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
173

Ralf Jung's avatar
Ralf Jung committed
174
\judgment{Well-typed terms}{\vctx \proves_\Sig \wtt{\term}{\type}}
175 176
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
177
	\axiom{x : \type \proves \wtt{x}{\type}}
178
\and
Ralf Jung's avatar
Ralf Jung committed
179 180
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
181
\and
Ralf Jung's avatar
Ralf Jung committed
182 183
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
184
\and
Ralf Jung's avatar
Ralf Jung committed
185 186
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
187 188 189 190 191 192 193 194 195 196 197
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
198
	\axiom{\vctx \proves \wtt{\unitval}{\unitsort}}
199
\and
Ralf Jung's avatar
Ralf Jung committed
200 201
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
202
\and
Ralf Jung's avatar
Ralf Jung committed
203 204
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
205 206
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
207 208
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
209 210
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
211 212
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
213 214
%%% monoids
\and
215
	\infer{}{\vctx \proves \wtt{\munit}{\textsort{M} \to \textsort{M}}}
216
\and
Ralf Jung's avatar
Ralf Jung committed
217 218
	\infer{\vctx \proves \wtt{\melt}{\textsort{M}} \and \vctx \proves \wtt{\meltB}{\textsort{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textsort{M}}}
219 220 221 222 223 224
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
225 226
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
244 245
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
246
	}{
247
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
248 249
	}
\and
Ralf Jung's avatar
Ralf Jung committed
250 251
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
252
\and
Ralf Jung's avatar
Ralf Jung committed
253 254
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
255 256 257 258 259 260 261 262
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
		\vctx \proves \wtt{\iname}{\textsort{InvName}}
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
Ralf Jung's avatar
Ralf Jung committed
263
	\infer{\vctx \proves \wtt{\melt}{\textsort{M}}}
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\state}{\textsort{State}}}
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textsort{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textsort{InvMask}}
	}{
Ralf Jung's avatar
Ralf Jung committed
280
		\vctx \proves \wtt{\pvs[\mask][\mask'] \prop}{\Prop}
281 282 283
	}
\and
	\infer{
Ralf Jung's avatar
Ralf Jung committed
284 285
		\vctx \proves \wtt{\expr}{\textsort{Expr}} \and
		\vctx,\var:\textsort{Val} \proves \wtt{\term}{\Prop} \and
286 287
		\vctx \proves \wtt{\mask}{\textsort{InvMask}}
	}{
Ralf Jung's avatar
Ralf Jung committed
288
		\vctx \proves \wtt{\wpre{\expr}{\Ret\var.\term}[\mask]}{\Prop}
289 290 291
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
292
\subsection{Timeless propositions}
Ralf Jung's avatar
Ralf Jung committed
293 294 295

Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
This is a \emph{meta-level} assertions about propositions, defined by the following judgment.
296

Ralf Jung's avatar
Ralf Jung committed
297
\judgment{Timeless Propositions}{\timeless{P}}
298

Ralf Jung's avatar
Ralf Jung committed
299 300
\ralf{Define a judgment that defines them.}

Ralf Jung's avatar
Ralf Jung committed
301
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
302

303 304
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Ralf Jung's avatar
Ralf Jung committed
305
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
306 307 308
Axioms $\prop \Ra \propB$ stand for judgments $\vctx \mid \cdot \proves \prop \Ra \propB$ with no assumptions.
(Bi-implications are analogous.)

309
\judgment{}{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
310
\paragraph{Laws of intuitionistic higher-order logic.}
311
This is entirely standard.
312 313
\begin{mathparpagebreakable}
\infer[Asm]
314 315 316
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
317
\infer[Eq]
318 319
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
320
\and
321 322 323 324 325 326 327 328 329 330 331 332
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
333
\infer[$\wedge$I]
334 335 336
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
337
\infer[$\wedge$EL]
338 339 340
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
341
\infer[$\wedge$ER]
342 343 344
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
345
\infer[$\vee$IL]
346 347 348
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
349
\infer[$\vee$IR]
350 351 352
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
353 354 355 356 357 358
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
359
\infer[$\Ra$I]
360 361 362
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
363
\infer[$\Ra$E]
364 365 366
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
367 368 369
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
370
\and
371 372 373 374
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
375
\and
376 377 378 379
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
380
\and
381 382 383 384
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
385
\and
386 387 388
\infer[$\lambda$]
  {}
  {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
389
\and
390 391 392 393
\infer[$\mu$]
  {}
  {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
394

Ralf Jung's avatar
Ralf Jung committed
395
\paragraph{Laws of (affine) bunched implications.}
396 397
\begin{mathpar}
\begin{array}{rMcMl}
398
  \TRUE * \prop &\Lra& \prop \\
399
  \prop * \propB &\Lra& \propB * \prop \\
400
  (\prop * \propB) * \propC &\Lra& \prop * (\propB * \propC)
401 402
\end{array}
\and
403
\infer[$*$-mono]
404 405 406
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
407
\and
408
\inferB[$\wand$I-E]
409 410
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
411 412
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
413
\paragraph{Laws for ghosts and physical resources.}
414 415 416
\begin{mathpar}
\begin{array}{rMcMl}
\ownGGhost{\melt} * \ownGGhost{\meltB} &\Lra&  \ownGGhost{\melt \mtimes \meltB} \\
417 418
%\TRUE &\Ra&  \ownGGhost{\munit}\\
\ownGGhost{\melt} &\Ra& \melt \in \mval % * \ownGGhost{\melt}
419 420 421
\end{array}
\and
\begin{array}{c}
422
\ownPhys{\state} * \ownPhys{\state'} \Ra \FALSE
423 424 425
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
426
\paragraph{Laws for the later modality.}
427
\begin{mathpar}
428
\infer[$\later$-mono]
429 430 431
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
432 433 434
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
435
\and
436 437 438 439 440
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
441 442 443 444
  \later{(\prop \wedge \propB)} &\Lra& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\Lra& \later{\prop} \vee \later{\propB} \\
\end{array}
\and
445
\begin{array}[c]{rMcMl}
446
  \later{\All x.\prop} &\Lra& \All x. \later\prop \\
447
  \Exists x. \later\prop &\Ra& \later{\Exists x.\prop}  \\
448 449 450 451
  \later{(\prop * \propB)} &\Lra& \later\prop * \later\propB
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
452
\paragraph{Laws for the always modality.}
453
\begin{mathpar}
454
\infer[$\always$I]
455 456 457
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
458 459 460 461 462 463 464
\infer[$\always$E]{}
  {\always{\prop} \Ra \prop}
\and
\begin{array}[c]{rMcMl}
  \always{(\prop * \propB)} &\Ra& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\Ra& \always{\prop} \land \propB \\
  \always{\later\prop} &\Lra& \later\always{\prop} \\
465 466
\end{array}
\and
467
\begin{array}[c]{rMcMl}
468 469 470 471 472
  \always{(\prop \land \propB)} &\Lra& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\Lra& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\Lra& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\Lra& \Exists x. \always{\prop} \\
\end{array}
Ralf Jung's avatar
Ralf Jung committed
473 474 475 476 477 478
\and
{ \term =_\type \term' \Ra \always \term =_\type \term'}
\and
{ \knowInv\iname\prop \Ra \always \knowInv\iname\prop}
\and
{ \ownGGhost{\munit(\melt)} \Ra \always \ownGGhost{\munit(\melt)}}
479 480
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
481
\paragraph{Laws of primitive view shifts.}
Ralf Jung's avatar
Ralf Jung committed
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
\begin{mathpar}
\infer[pvs-intro]
{}{\prop \proves \pvs[\mask] \prop}

\infer[pvs-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[pvs-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[pvs-trans]
{\mask_2 \subseteq \mask_1 \cup \mask_3}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[pvs-mask-frame]
{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_f][\mask_2 \uplus \mask_f] \prop}

\infer[pvs-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}

\infer[pvs-allocI]
{\text{$\mask$ is infinite}}
{\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}

\infer[pvs-openI]
{}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}

\infer[pvs-closeI]
{}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}

\infer[pvs-update]
{\melt \mupd \meltsB}
{\ownGGhost\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownGGhost\meltB}
\end{mathpar}
518

Ralf Jung's avatar
Ralf Jung committed
519
\paragraph{Laws of weakest preconditions.}
Ralf Jung's avatar
Ralf Jung committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
\begin{mathpar}
\infer[wp-value]
{}{\prop[\val/\var] \proves \wpre{\val}{\Ret\var.\prop}[\mask]}

\infer[wp-mono]
{\mask_1 \subseteq \mask_2 \and \var:\textsort{val}\mid\prop \proves \propB}
{\wpre\expr{\Ret\var.\prop}[\mask_1] \proves \wpre\expr{\Ret\var.\propB}[\mask_2]}

\infer[pvs-wp]
{}{\pvs[\mask] \wpre\expr{\Ret\var.\prop}[\mask] \proves \wpre\expr{\Ret\var.\prop}[\mask]}

\infer[wp-pvs]
{}{\wpre\expr{\Ret\var.\pvs[\mask] \prop}[\mask] \proves \wpre\expr{\Ret\var.\prop}[\mask]}

\infer[wp-atomic]
{\mask_2 \subseteq \mask_1 \and \physatomic{\expr}}
{\pvs[\mask_1][\mask_2] \wpre\expr{\Ret\var. \pvs[\mask_2][\mask_1]\prop}[\mask_2]
 \proves \wpre\expr{\Ret\var.\prop}[\mask_1]}

\infer[wp-frame]
{}{\propB * \wpre\expr{\Ret\var.\prop}[\mask] \proves \wpre\expr{\Ret\var.\propB*\prop}[\mask]}

\infer[wp-frame-step]
{\toval(\expr) = \bot}
{\later\propB * \wpre\expr{\Ret\var.\prop}[\mask] \proves \wpre\expr{\Ret\var.\propB*\prop}[\mask]}

\infer[wp-bind]
{\text{$\lctx$ is a context}}
{\wpre\expr{\Ret\var. \wpre{\lctx(\ofval(\var))}{\Ret\varB.\prop}[\mask]}[\mask] \proves \wpre{\lctx(\expr)}{\Ret\varB.\prop}[\mask]}
\end{mathpar}
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
\subsection{Lifting of operational semantics}\label{sec:lifting}
~\\\ralf{Add this.}

% The following lemmas help in proving axioms for a particular language.
% The first applies to expressions with side-effects, and the second to side-effect-free expressions.
% \dave{Update the others, and the example, wrt the new treatment of $\predB$.}
% \begin{align*}
%  &\All \expr, \state, \pred, \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \expr', \state'. \cfg{\state}{\expr} \step \cfg{\state'}{\expr'} \implies \pred(\expr', \state')) \implies \\
%  &{} \proves \bigl( (\All \expr', \state'. \pred (\expr', \state') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{ \later \prop * \ownPhys{\state} }{\expr}{\Ret\val. \propB}[\mask] \bigr) \\
%  \quad\\
%  &\All \expr, \pred, \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \pred(\expr_2)) \implies \\
%  &{} \proves \bigl( (\All \expr'. \pred(\expr') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] \bigr)
% \end{align*}
% Note that $\pred$ is a meta-logic predicate---it does not depend on any world or resources being owned.

% The following specializations cover all cases of a heap-manipulating lambda calculus like $F_{\mu!}$.
% \begin{align*}
%  &\All \expr, \expr', \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \expr_2 = \expr') \implies \\
%  &{} \proves (\hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask] \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] ) \\
%  \quad \\
%  &\All \expr, \state, \pred, \mask. \\
%  &\textlog{atomic}(e) \implies \\
%  &\bigl(\All \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \pred(\expr_2, \state_2)\bigr) \implies \\
%  &{} \proves (\hoare{ \ownPhys{\state} }{\expr}{\Ret\val. \Exists\state'. \ownPhys{\state'} \land \pred(\val, \state') }[\mask] )
% \end{align*}
% The first is restricted to deterministic pure reductions, like $\beta$-reduction.
% The second is suited to proving triples for (possibly non-deterministic) atomic expressions; for example, with $\expr \eqdef \;!\ell$ (dereferencing $\ell$) and $\state \eqdef h \mtimes \ell \mapsto \valB$ and $\pred(\val, \state') \eqdef \state' = (h \mtimes \ell \mapsto \valB) \land \val = \valB$, one obtains the axiom $\All h, \ell, \valB. \hoare{\ownPhys{h \mtimes \ell \mapsto \valB}}{!\ell}{\Ret\val. \val = \valB \land \ownPhys{h \mtimes \ell \mapsto \valB} }$.
% %Axioms for CAS-like operations can be obtained by first deriving rules for the two possible cases, and then using the disjunction rule.


\subsection{Adequacy}

The adequacy statement reads as follows:
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
591
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
Ralf Jung's avatar
Ralf Jung committed
592 593 594 595
 \\&(\All n. \melt \in \mval_n) \Ra
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}{x.\; \pred(x)}[\mask]) \Ra
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
596 597
     \\&\pred(\val)
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
598
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624


% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




625 626 627 628
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: