interface.v 20.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export ofe.
2
Set Primitive Projections.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
4
5
6
7
8
9
10
11

Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "'emp'".
Reserved Notation "'⌜' φ '⌝'" (at level 1, φ at level 200, format "⌜ φ ⌝").
Reserved Notation "P ∗ Q" (at level 80, right associativity).
Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "▷ P" (at level 20, right associativity).

Section bi_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
  Context {PROP : Type} `{Dist PROP, Equiv PROP}.
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
15
16
17
18
19
20
21
22
23
  Context (bi_entails : PROP  PROP  Prop).
  Context (bi_emp : PROP).
  Context (bi_pure : Prop  PROP).
  Context (bi_and : PROP  PROP  PROP).
  Context (bi_or : PROP  PROP  PROP).
  Context (bi_impl : PROP  PROP  PROP).
  Context (bi_forall :  A, (A  PROP)  PROP).
  Context (bi_exist :  A, (A  PROP)  PROP).
  Context (bi_sep : PROP  PROP  PROP).
  Context (bi_wand : PROP  PROP  PROP).
  Context (bi_persistently : PROP  PROP).
24
  Context (sbi_internal_eq :  A : ofeT, A  A  PROP).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
25
  Context (sbi_later : PROP  PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
28
29
30

  Local Infix "⊢" := bi_entails.
  Local Notation "'emp'" := bi_emp.
  Local Notation "'True'" := (bi_pure True).
  Local Notation "'False'" := (bi_pure False).
31
  Local Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
34
35
36
37
38
39
40
  Local Infix "∧" := bi_and.
  Local Infix "∨" := bi_or.
  Local Infix "→" := bi_impl.
  Local Notation "∀ x .. y , P" :=
    (bi_forall _ (λ x, .. (bi_forall _ (λ y, P)) ..)).
  Local Notation "∃ x .. y , P" :=
    (bi_exist _ (λ x, .. (bi_exist _ (λ y, P)) ..)).
  Local Infix "∗" := bi_sep.
  Local Infix "-∗" := bi_wand.
41
  Local Notation "x ≡ y" := (sbi_internal_eq _ x y).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
42
  Local Notation "▷ P" := (sbi_later P).
Robbert Krebbers's avatar
Robbert Krebbers committed
43

Ralf Jung's avatar
Ralf Jung committed
44
45
46
47
48
49
  (** * Axioms for a general BI (logic of bunched implications) *)

  (** The following axioms are satisifed by both affine and linear BIs, and BIs
  that combine both kinds of resources. In particular, we have an "ordered RA"
  model satisfying all these axioms. For this model, we extend RAs with an
  arbitrary partial order, and up-close resources wrt. that order (instead of
50
  extension order).  We demand composition to be monotone wrt. the order: [x1 ≼
51
52
53
  x2 → x1 ⋅ y ≼ x2 ⋅ y].  We define [emp := λ r, ε ≼ r]; persistently is still
  defined with the core: [persistently P := λ r, P (core r)].  This is uplcosed
  because the core is monotone.  *)
Ralf Jung's avatar
Ralf Jung committed
54

Ralf Jung's avatar
Ralf Jung committed
55
  Record BiMixin := {
Robbert Krebbers's avatar
Robbert Krebbers committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    bi_mixin_entails_po : PreOrder bi_entails;
    bi_mixin_equiv_spec P Q : equiv P Q  (P  Q)  (Q  P);

    (* Non-expansiveness *)
    bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure;
    bi_mixin_and_ne : NonExpansive2 bi_and;
    bi_mixin_or_ne : NonExpansive2 bi_or;
    bi_mixin_impl_ne : NonExpansive2 bi_impl;
    bi_mixin_forall_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_forall A);
    bi_mixin_exist_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_exist A);
    bi_mixin_sep_ne : NonExpansive2 bi_sep;
    bi_mixin_wand_ne : NonExpansive2 bi_wand;
    bi_mixin_persistently_ne : NonExpansive bi_persistently;

    (* Higher-order logic *)
    bi_mixin_pure_intro P (φ : Prop) : φ  P   φ ;
    bi_mixin_pure_elim' (φ : Prop) P : (φ  True  P)   φ   P;
    bi_mixin_pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a )    a, φ a ;

    bi_mixin_and_elim_l P Q : P  Q  P;
    bi_mixin_and_elim_r P Q : P  Q  Q;
    bi_mixin_and_intro P Q R : (P  Q)  (P  R)  P  Q  R;

    bi_mixin_or_intro_l P Q : P  P  Q;
    bi_mixin_or_intro_r P Q : Q  P  Q;
    bi_mixin_or_elim P Q R : (P  R)  (Q  R)  P  Q  R;

    bi_mixin_impl_intro_r P Q R : (P  Q  R)  P  Q  R;
    bi_mixin_impl_elim_l' P Q R : (P  Q  R)  P  Q  R;

    bi_mixin_forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a;
    bi_mixin_forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a;

    bi_mixin_exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a;
    bi_mixin_exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q;

    (* BI connectives *)
    bi_mixin_sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q';
    bi_mixin_emp_sep_1 P : P  emp  P;
    bi_mixin_emp_sep_2 P : emp  P  P;
    bi_mixin_sep_comm' P Q : P  Q  Q  P;
    bi_mixin_sep_assoc' P Q R : (P  Q)  R  P  (Q  R);
    bi_mixin_wand_intro_r P Q R : (P  Q  R)  P  Q - R;
    bi_mixin_wand_elim_l' P Q R : (P  Q - R)  P  Q  R;

    (* Persistently *)
104
    (* In the ordered RA model: Holds without further assumptions. *)
105
106
    bi_mixin_persistently_mono P Q :
      (P  Q)  bi_persistently P  bi_persistently Q;
107
    (* In the ordered RA model: `core` is idempotent *)
108
109
    bi_mixin_persistently_idemp_2 P :
      bi_persistently P  bi_persistently (bi_persistently P);
Robbert Krebbers's avatar
Robbert Krebbers committed
110

Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
    (* In the ordered RA model: `ε ≼ core x` *)
    bi_mixin_persistently_emp_intro P : P  bi_persistently emp;
113

Robbert Krebbers's avatar
Robbert Krebbers committed
114
    bi_mixin_persistently_forall_2 {A} (Ψ : A  PROP) :
115
      ( a, bi_persistently (Ψ a))  bi_persistently ( a, Ψ a);
Robbert Krebbers's avatar
Robbert Krebbers committed
116
    bi_mixin_persistently_exist_1 {A} (Ψ : A  PROP) :
117
      bi_persistently ( a, Ψ a)   a, bi_persistently (Ψ a);
Robbert Krebbers's avatar
Robbert Krebbers committed
118

119
120
    (* In the ordered RA model: [core x ≼ core (x ⋅ y)].
       Note that this implies that the core is monotone. *)
121
122
    bi_mixin_persistently_absorbing P Q :
      bi_persistently P  Q  bi_persistently P;
123
    (* In the ordered RA model: [x ⋅ core x = core x]. *)
124
    bi_mixin_persistently_and_sep_elim P Q :
125
      bi_persistently P  Q  P  Q;
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
  }.

Ralf Jung's avatar
Ralf Jung committed
128
  Record SbiMixin := {
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
129
    sbi_mixin_later_contractive : Contractive sbi_later;
130
131
132
133
134
135
136
137
138
    sbi_mixin_internal_eq_ne (A : ofeT) : NonExpansive2 (sbi_internal_eq A);

    (* Equality *)
    sbi_mixin_internal_eq_refl {A : ofeT} P (a : A) : P  a  a;
    sbi_mixin_internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
      NonExpansive Ψ  a  b  Ψ a  Ψ b;
    sbi_mixin_fun_ext {A} {B : A  ofeT} (f g : ofe_fun B) : ( x, f x  g x)  f  g;
    sbi_mixin_sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  x  y;
    sbi_mixin_discrete_eq_1 {A : ofeT} (a b : A) : Discrete a  a  b  a  b;
Robbert Krebbers's avatar
Robbert Krebbers committed
139

140
    (* Later *)
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
143
144
145
146
147
148
149
150
151
    sbi_mixin_later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y);
    sbi_mixin_later_eq_2 {A : ofeT} (x y : A) :  (x  y)  Next x  Next y;

    sbi_mixin_later_mono P Q : (P  Q)   P   Q;
    sbi_mixin_löb P : ( P  P)  P;

    sbi_mixin_later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a;
    sbi_mixin_later_exist_false {A} (Φ : A  PROP) :
      (  a, Φ a)   False  ( a,  Φ a);
    sbi_mixin_later_sep_1 P Q :  (P  Q)   P   Q;
    sbi_mixin_later_sep_2 P Q :  P   Q   (P  Q);
152
153
154
155
    sbi_mixin_later_persistently_1 P :
       bi_persistently P  bi_persistently ( P);
    sbi_mixin_later_persistently_2 P :
      bi_persistently ( P)   bi_persistently P;
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
158
159
160

    sbi_mixin_later_false_em P :  P   False  ( False  P);
  }.
End bi_mixin.

Ralf Jung's avatar
Ralf Jung committed
161
Structure bi := Bi {
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  bi_car :> Type;
  bi_dist : Dist bi_car;
  bi_equiv : Equiv bi_car;
  bi_entails : bi_car  bi_car  Prop;
  bi_emp : bi_car;
  bi_pure : Prop  bi_car;
  bi_and : bi_car  bi_car  bi_car;
  bi_or : bi_car  bi_car  bi_car;
  bi_impl : bi_car  bi_car  bi_car;
  bi_forall :  A, (A  bi_car)  bi_car;
  bi_exist :  A, (A  bi_car)  bi_car;
  bi_sep : bi_car  bi_car  bi_car;
  bi_wand : bi_car  bi_car  bi_car;
  bi_persistently : bi_car  bi_car;
  bi_ofe_mixin : OfeMixin bi_car;
177
  bi_bi_mixin : BiMixin bi_entails bi_emp bi_pure bi_and bi_or bi_impl bi_forall
Robbert Krebbers's avatar
Robbert Krebbers committed
178
                        bi_exist bi_sep bi_wand bi_persistently;
Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
}.

Coercion bi_ofeC (PROP : bi) : ofeT := OfeT PROP (bi_ofe_mixin PROP).
Canonical Structure bi_ofeC.

Instance: Params (@bi_entails) 1.
Instance: Params (@bi_emp) 1.
Instance: Params (@bi_pure) 1.
Instance: Params (@bi_and) 1.
Instance: Params (@bi_or) 1.
Instance: Params (@bi_impl) 1.
Instance: Params (@bi_forall) 2.
Instance: Params (@bi_exist) 2.
Instance: Params (@bi_sep) 1.
Instance: Params (@bi_wand) 1.
Instance: Params (@bi_persistently) 1.

Delimit Scope bi_scope with I.
Arguments bi_car : simpl never.
Arguments bi_dist : simpl never.
Arguments bi_equiv : simpl never.
Arguments bi_entails {PROP} _%I _%I : simpl never, rename.
Arguments bi_emp {PROP} : simpl never, rename.
202
Arguments bi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
204
205
206
207
208
209
210
211
Arguments bi_and {PROP} _%I _%I : simpl never, rename.
Arguments bi_or {PROP} _%I _%I : simpl never, rename.
Arguments bi_impl {PROP} _%I _%I : simpl never, rename.
Arguments bi_forall {PROP _} _%I : simpl never, rename.
Arguments bi_exist {PROP _} _%I : simpl never, rename.
Arguments bi_sep {PROP} _%I _%I : simpl never, rename.
Arguments bi_wand {PROP} _%I _%I : simpl never, rename.
Arguments bi_persistently {PROP} _%I : simpl never, rename.

Ralf Jung's avatar
Ralf Jung committed
212
Structure sbi := Sbi {
Robbert Krebbers's avatar
Robbert Krebbers committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  sbi_car :> Type;
  sbi_dist : Dist sbi_car;
  sbi_equiv : Equiv sbi_car;
  sbi_entails : sbi_car  sbi_car  Prop;
  sbi_emp : sbi_car;
  sbi_pure : Prop  sbi_car;
  sbi_and : sbi_car  sbi_car  sbi_car;
  sbi_or : sbi_car  sbi_car  sbi_car;
  sbi_impl : sbi_car  sbi_car  sbi_car;
  sbi_forall :  A, (A  sbi_car)  sbi_car;
  sbi_exist :  A, (A  sbi_car)  sbi_car;
  sbi_sep : sbi_car  sbi_car  sbi_car;
  sbi_wand : sbi_car  sbi_car  sbi_car;
  sbi_persistently : sbi_car  sbi_car;
227
  sbi_internal_eq :  A : ofeT, A  A  sbi_car;
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
228
  sbi_later : sbi_car  sbi_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
229
  sbi_ofe_mixin : OfeMixin sbi_car;
230
  sbi_bi_mixin : BiMixin sbi_entails sbi_emp sbi_pure sbi_and sbi_or sbi_impl
Robbert Krebbers's avatar
Robbert Krebbers committed
231
232
233
234
                         sbi_forall sbi_exist sbi_sep sbi_wand sbi_persistently;
  sbi_sbi_mixin : SbiMixin sbi_entails sbi_pure sbi_or sbi_impl
                           sbi_forall sbi_exist sbi_sep
                           sbi_persistently sbi_internal_eq sbi_later;
Robbert Krebbers's avatar
Robbert Krebbers committed
235
236
}.

237
238
239
240
241
Instance: Params (@sbi_later) 1.
Instance: Params (@sbi_internal_eq) 1.

Arguments sbi_later {PROP} _%I : simpl never, rename.
Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
242
243
244
245
246
247
248
249
250
251
252
253

Coercion sbi_ofeC (PROP : sbi) : ofeT := OfeT PROP (sbi_ofe_mixin PROP).
Canonical Structure sbi_ofeC.
Coercion sbi_bi (PROP : sbi) : bi :=
  {| bi_ofe_mixin := sbi_ofe_mixin PROP; bi_bi_mixin := sbi_bi_mixin PROP |}.
Canonical Structure sbi_bi.

Arguments sbi_car : simpl never.
Arguments sbi_dist : simpl never.
Arguments sbi_equiv : simpl never.
Arguments sbi_entails {PROP} _%I _%I : simpl never, rename.
Arguments sbi_emp {PROP} : simpl never, rename.
254
Arguments sbi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
255
256
257
258
259
260
261
262
Arguments sbi_and {PROP} _%I _%I : simpl never, rename.
Arguments sbi_or {PROP} _%I _%I : simpl never, rename.
Arguments sbi_impl {PROP} _%I _%I : simpl never, rename.
Arguments sbi_forall {PROP _} _%I : simpl never, rename.
Arguments sbi_exist {PROP _} _%I : simpl never, rename.
Arguments sbi_sep {PROP} _%I _%I : simpl never, rename.
Arguments sbi_wand {PROP} _%I _%I : simpl never, rename.
Arguments sbi_persistently {PROP} _%I : simpl never, rename.
263
Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
264
Arguments sbi_later {PROP} _%I : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
265
266
267
268
269

Hint Extern 0 (bi_entails _ _) => reflexivity.
Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP).
Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True).

270
271
Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope.
Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
272
273

Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I)
274
275
  (at level 95, no associativity) : stdpp_scope.
Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
276

277
Notation "P -∗ Q" := (P  Q) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
278
279

Notation "'emp'" := (bi_emp) : bi_scope.
280
Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
Notation "'True'" := (bi_pure True) : bi_scope.
Notation "'False'" := (bi_pure False) : bi_scope.
Infix "∧" := bi_and : bi_scope.
Notation "(∧)" := bi_and (only parsing) : bi_scope.
Infix "∨" := bi_or : bi_scope.
Notation "(∨)" := bi_or (only parsing) : bi_scope.
Infix "→" := bi_impl : bi_scope.
Infix "∗" := bi_sep : bi_scope.
Notation "(∗)" := bi_sep (only parsing) : bi_scope.
Notation "P -∗ Q" := (bi_wand P Q) : bi_scope.
Notation "∀ x .. y , P" :=
  (bi_forall (λ x, .. (bi_forall (λ y, P)) ..)%I) : bi_scope.
Notation "∃ x .. y , P" :=
  (bi_exist (λ x, .. (bi_exist (λ y, P)) ..)%I) : bi_scope.

296
Infix "≡" := sbi_internal_eq : bi_scope.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
297
Notation "▷ P" := (sbi_later P) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

Coercion bi_valid {PROP : bi} (P : PROP) : Prop := emp  P.
Coercion sbi_valid {PROP : sbi} : PROP  Prop := bi_valid.

Arguments bi_valid {_} _%I : simpl never.
Typeclasses Opaque bi_valid.

Module bi.
Section bi_laws.
Context {PROP : bi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.
Implicit Types A : Type.

(* About the entailment *)
Global Instance entails_po : PreOrder (@bi_entails PROP).
Proof. eapply bi_mixin_entails_po, bi_bi_mixin. Qed.
Lemma equiv_spec P Q : P  Q  (P  Q)  (Q  P).
Proof. eapply bi_mixin_equiv_spec, bi_bi_mixin. Qed.

(* Non-expansiveness *)
Global Instance pure_ne n : Proper (iff ==> dist n) (@bi_pure PROP).
Proof. eapply bi_mixin_pure_ne, bi_bi_mixin. Qed.
Global Instance and_ne : NonExpansive2 (@bi_and PROP).
Proof. eapply bi_mixin_and_ne, bi_bi_mixin. Qed.
Global Instance or_ne : NonExpansive2 (@bi_or PROP).
Proof. eapply bi_mixin_or_ne, bi_bi_mixin. Qed.
Global Instance impl_ne : NonExpansive2 (@bi_impl PROP).
Proof. eapply bi_mixin_impl_ne, bi_bi_mixin. Qed.
Global Instance forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_forall PROP A).
Proof. eapply bi_mixin_forall_ne, bi_bi_mixin. Qed.
Global Instance exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_exist PROP A).
Proof. eapply bi_mixin_exist_ne, bi_bi_mixin. Qed.
Global Instance sep_ne : NonExpansive2 (@bi_sep PROP).
Proof. eapply bi_mixin_sep_ne, bi_bi_mixin. Qed.
Global Instance wand_ne : NonExpansive2 (@bi_wand PROP).
Proof. eapply bi_mixin_wand_ne, bi_bi_mixin. Qed.
Global Instance persistently_ne : NonExpansive (@bi_persistently PROP).
Proof. eapply bi_mixin_persistently_ne, bi_bi_mixin. Qed.

(* Higher-order logic *)
Lemma pure_intro P (φ : Prop) : φ  P   φ .
Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed.
Lemma pure_elim' (φ : Prop) P : (φ  True  P)   φ   P.
Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed.
Lemma pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a  : PROP)    a, φ a .
Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed.

Lemma and_elim_l P Q : P  Q  P.
Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. eapply bi_mixin_and_elim_r, bi_bi_mixin. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. eapply bi_mixin_and_intro, bi_bi_mixin. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. eapply bi_mixin_or_intro_l, bi_bi_mixin. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. eapply bi_mixin_or_intro_r, bi_bi_mixin. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. eapply bi_mixin_or_elim, bi_bi_mixin. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_intro_r, bi_bi_mixin. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_elim_l', bi_bi_mixin. Qed.

Lemma forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a.
Proof. eapply bi_mixin_forall_intro, bi_bi_mixin. Qed.
Lemma forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a.
370
Proof. eapply (bi_mixin_forall_elim  bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Lemma exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a.
Proof. eapply bi_mixin_exist_intro, bi_bi_mixin. Qed.
Lemma exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. eapply bi_mixin_exist_elim, bi_bi_mixin. Qed.

(* BI connectives *)
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. eapply bi_mixin_sep_mono, bi_bi_mixin. Qed.
Lemma emp_sep_1 P : P  emp  P.
Proof. eapply bi_mixin_emp_sep_1, bi_bi_mixin. Qed.
Lemma emp_sep_2 P : emp  P  P.
Proof. eapply bi_mixin_emp_sep_2, bi_bi_mixin. Qed.
Lemma sep_comm' P Q : P  Q  Q  P.
385
Proof. eapply (bi_mixin_sep_comm' bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
387
388
389
390
391
392
393
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
Proof. eapply bi_mixin_sep_assoc', bi_bi_mixin. Qed.
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
Proof. eapply bi_mixin_wand_intro_r, bi_bi_mixin. Qed.
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
Proof. eapply bi_mixin_wand_elim_l', bi_bi_mixin. Qed.

(* Persistently *)
394
Lemma persistently_mono P Q : (P  Q)  bi_persistently P  bi_persistently Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
395
Proof. eapply bi_mixin_persistently_mono, bi_bi_mixin. Qed.
396
397
Lemma persistently_idemp_2 P :
  bi_persistently P  bi_persistently (bi_persistently P).
Robbert Krebbers's avatar
Robbert Krebbers committed
398
399
Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_mixin. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
400
401
402
Lemma persistently_emp_intro P : P  bi_persistently emp.
Proof. eapply bi_mixin_persistently_emp_intro, bi_bi_mixin. Qed.

403
404
Lemma persistently_forall_2 {A} (Ψ : A  PROP) :
  ( a, bi_persistently (Ψ a))  bi_persistently ( a, Ψ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
405
Proof. eapply bi_mixin_persistently_forall_2, bi_bi_mixin. Qed.
406
407
Lemma persistently_exist_1 {A} (Ψ : A  PROP) :
  bi_persistently ( a, Ψ a)   a, bi_persistently (Ψ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
408
409
Proof. eapply bi_mixin_persistently_exist_1, bi_bi_mixin. Qed.

410
Lemma persistently_absorbing P Q : bi_persistently P  Q  bi_persistently P.
411
Proof. eapply (bi_mixin_persistently_absorbing bi_entails), bi_bi_mixin. Qed.
412
413
Lemma persistently_and_sep_elim P Q : bi_persistently P  Q  P  Q.
Proof. eapply (bi_mixin_persistently_and_sep_elim bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
415
416
417
418
419
420
End bi_laws.

Section sbi_laws.
Context {PROP : sbi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
(* Equality *)
Global Instance internal_eq_ne (A : ofeT) : NonExpansive2 (@sbi_internal_eq PROP A).
Proof. eapply sbi_mixin_internal_eq_ne, sbi_sbi_mixin. Qed.

Lemma internal_eq_refl {A : ofeT} P (a : A) : P  a  a.
Proof. eapply sbi_mixin_internal_eq_refl, sbi_sbi_mixin. Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
  NonExpansive Ψ  a  b  Ψ a  Ψ b.
Proof. eapply sbi_mixin_internal_eq_rewrite, sbi_sbi_mixin. Qed.

Lemma fun_ext {A} {B : A  ofeT} (f g : ofe_fun B) : ( x, f x  g x)  (f  g : PROP).
Proof. eapply sbi_mixin_fun_ext, sbi_sbi_mixin. Qed.
Lemma sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  (x  y : PROP).
Proof. eapply sbi_mixin_sig_eq, sbi_sbi_mixin. Qed.
Lemma discrete_eq_1 {A : ofeT} (a b : A) :
  Discrete a  a  b  (a  b : PROP).
Proof. eapply sbi_mixin_discrete_eq_1, sbi_sbi_mixin. Qed.

(* Later *)
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
440
Global Instance later_contractive : Contractive (@sbi_later PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
Proof. eapply sbi_mixin_later_contractive, sbi_sbi_mixin. Qed.

Lemma later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y : PROP).
Proof. eapply sbi_mixin_later_eq_1, sbi_sbi_mixin. Qed.
Lemma later_eq_2 {A : ofeT} (x y : A) :  (x  y)  (Next x  Next y : PROP).
Proof. eapply sbi_mixin_later_eq_2, sbi_sbi_mixin. Qed.

Lemma later_mono P Q : (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_mono, sbi_sbi_mixin. Qed.
Lemma löb P : ( P  P)  P.
Proof. eapply sbi_mixin_löb, sbi_sbi_mixin. Qed.

Lemma later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a.
Proof. eapply sbi_mixin_later_forall_2, sbi_sbi_mixin. Qed.
Lemma later_exist_false {A} (Φ : A  PROP) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. eapply sbi_mixin_later_exist_false, sbi_sbi_mixin. Qed.
Lemma later_sep_1 P Q :  (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_sep_1, sbi_sbi_mixin. Qed.
Lemma later_sep_2 P Q :  P   Q   (P  Q).
Proof. eapply sbi_mixin_later_sep_2, sbi_sbi_mixin. Qed.
462
Lemma later_persistently_1 P :  bi_persistently P  bi_persistently ( P).
Robbert Krebbers's avatar
Robbert Krebbers committed
463
Proof. eapply (sbi_mixin_later_persistently_1 bi_entails), sbi_sbi_mixin. Qed.
464
Lemma later_persistently_2 P : bi_persistently ( P)   bi_persistently P.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Proof. eapply (sbi_mixin_later_persistently_2 bi_entails), sbi_sbi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
466
467
468
469

Lemma later_false_em P :  P   False  ( False  P).
Proof. eapply sbi_mixin_later_false_em, sbi_sbi_mixin. Qed.
End sbi_laws.
470

Robbert Krebbers's avatar
Robbert Krebbers committed
471
End bi.