heap_lang.v 12.5 KB
Newer Older
1
Require Export program_logic.language prelude.strings.
2
Require Import prelude.gmap.
3

4 5
Module heap_lang.
(** Expressions and vals. *)
6
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
7

8 9
Inductive base_lit : Set :=
  | LitNat (n : nat) | LitBool (b : bool) | LitUnit.
10 11
Notation LitTrue := (LitBool true).
Notation LitFalse := (LitBool false).
12 13 14 15 16
Inductive un_op : Set :=
  | NegOp.
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

Ralf Jung's avatar
Ralf Jung committed
17
Inductive expr :=
18
  (* Base lambda calculus *)
19 20
  | Var (x : string)
  | Rec (f x : string) (e : expr)
21
  | App (e1 e2 : expr)
22 23 24 25 26
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
27 28 29 30 31 32 33
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
34
  | Case (e0 : expr) (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
35 36 37 38 39 40 41 42
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
43

44
Inductive val :=
45
  | RecV (f x : string) (e : expr) (* e should be closed *)
46
  | LitV (l : base_lit)
47 48 49 50
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
51

52
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
53
  match v with
54
  | RecV f x e => Rec f x e
55
  | LitV l => Lit l
56 57 58
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
59
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
60
  end.
61
Fixpoint to_val (e : expr) : option val :=
62
  match e with
63
  | Rec f x e => Some (RecV f x e)
64
  | Lit l => Some (LitV l)
65 66 67
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
68
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
69
  | _ => None
70 71
  end.

72 73
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
74

75
(** Evaluation contexts *)
76 77 78
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
79 80 81 82
  | UnOpCtx (op : un_op)
  | BinOpLCtx (op : bin_op) (e2 : expr)
  | BinOpRCtx (op : bin_op) (v1 : val)
  | IfCtx (e1 e2 : expr)
83 84 85 86 87 88
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
89
  | CaseCtx (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
90 91 92 93 94 95 96
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
97

98
Notation ectx := (list ectx_item).
99

100
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
101 102 103
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
104 105 106 107
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
108 109 110 111 112 113
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
114
  | CaseCtx x1 e1 x2 e2 => Case e x1 e1 x2 e2
115 116 117 118 119 120 121
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
122
  end.
123
Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
(** Substitution *)
(** We have [subst e "" v = e] to deal with anonymous binders *)
Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
  match e with
  | Var y => if decide (x = y  x  "") then of_val v else Var y
  | Rec f y e => Rec f y (if decide (x  f  x  y) then subst e x v else e)
  | App e1 e2 => App (subst e1 x v) (subst e2 x v)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst e x v)
  | BinOp op e1 e2 => BinOp op (subst e1 x v) (subst e2 x v)
  | If e0 e1 e2 => If (subst e0 x v) (subst e1 x v) (subst e2 x v)
  | Pair e1 e2 => Pair (subst e1 x v) (subst e2 x v)
  | Fst e => Fst (subst e x v)
  | Snd e => Snd (subst e x v)
  | InjL e => InjL (subst e x v)
  | InjR e => InjR (subst e x v)
  | Case e0 x1 e1 x2 e2 =>
     Case (subst e0 x v)
       x1 (if decide (x  x1) then subst e1 x v else e1)
       x2 (if decide (x  x2) then subst e2 x v else e2)
  | Fork e => Fork (subst e x v)
  | Loc l => Loc l
  | Alloc e => Alloc (subst e x v)
  | Load e => Load (subst e x v)
  | Store e1 e2 => Store (subst e1 x v) (subst e2 x v)
  | Cas e0 e1 e2 => Cas (subst e0 x v) (subst e1 x v) (subst e2 x v)
  end.

153
(** The stepping relation *)
154 155
Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit :=
  match op, l with
156
  | NegOp, LitBool b => Some (LitBool (negb b))
157 158 159 160 161
  | _, _ => None
  end.

Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit :=
  match op, l1, l2 with
162 163 164 165 166
  | PlusOp, LitNat n1, LitNat n2 => Some (LitNat (n1 + n2))
  | MinusOp, LitNat n1, LitNat n2 => Some (LitNat (n1 - n2))
  | LeOp, LitNat n1, LitNat n2 => Some (LitBool (bool_decide (n1  n2)))
  | LtOp, LitNat n1, LitNat n2 => Some (LitBool (bool_decide (n1 < n2)))
  | EqOp, LitNat n1, LitNat n2 => Some (LitBool (bool_decide (n1 = n2)))
167 168 169
  | _, _, _ => None
  end.

170
Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
171
  | BetaS f x e1 e2 v2 σ :
172
     to_val e2 = Some v2 
173 174 175
     head_step (App (Rec f x e1) e2) σ
       (subst (subst e1 f (RecV f x e1)) x v2) σ None
  | UnOpS op l l' σ :
176 177
     un_op_eval op l = Some l'  
     head_step (UnOp op (Lit l)) σ (Lit l') σ None
178
  | BinOpS op l1 l2 l' σ :
179 180 181
     bin_op_eval op l1 l2 = Some l'  
     head_step (BinOp op (Lit l1) (Lit l2)) σ (Lit l') σ None
  | IfTrueS e1 e2 σ :
182
     head_step (If (Lit LitTrue) e1 e2) σ e1 σ None
183
  | IfFalseS e1 e2 σ :
184
     head_step (If (Lit LitFalse) e1 e2) σ e2 σ None
185 186 187 188 189 190
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
191
  | CaseLS e0 v0 x1 e1 x2 e2 σ :
192
     to_val e0 = Some v0 
193 194
     head_step (Case (InjL e0) x1 e1 x2 e2) σ (subst e1 x1 v0) σ None
  | CaseRS e0 v0 x1 e1 x2 e2 σ :
195
     to_val e0 = Some v0 
196
     head_step (Case (InjR e0) x1 e1 x2 e2) σ (subst e2 x2 v0) σ None
197
  | ForkS e σ:
198
     head_step (Fork e) σ (Lit LitUnit) σ (Some e)
199 200 201 202 203 204 205 206
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
207
     head_step (Store (Loc l) e) σ (Lit LitUnit) (<[l:=v]>σ) None
208 209 210
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
211
     head_step (Cas (Loc l) e1 e2) σ (Lit LitFalse) σ None
212 213 214
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
215
     head_step (Cas (Loc l) e1 e2) σ (Lit LitTrue) (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
216

217
(** Atomic expressions *)
218
Definition atomic (e: expr) : Prop :=
219 220 221 222 223 224 225
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
  | _ => False
  end.
226

227 228 229 230
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
231
  Ectx_step K e1' e2' :
232 233 234 235 236 237
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof. by induction v; simplify_option_equality. Qed.
238

239
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
240
Proof.
241
  revert v; induction e; intros; simplify_option_equality; auto with f_equal.
242
Qed.
243

244 245
Instance: Injective (=) (=) of_val.
Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
246

247
Instance fill_item_inj Ki : Injective (=) (=) (fill_item Ki).
248
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
249

250 251
Instance ectx_fill_inj K : Injective (=) (=) (fill K).
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
252

253 254
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
255

256
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
257
Proof.
258 259
  intros [v' Hv']; revert v' Hv'.
  induction K as [|[]]; intros; simplify_option_equality; eauto.
260
Qed.
261

262 263
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
264

265 266 267
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
268

269 270
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
271

272 273
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
274

275
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
276
Proof.
277 278
  rewrite eq_None_not_Some.
  destruct K as [|[]]; naive_solver eauto using fill_val.
279
Qed.
280

281 282 283
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Proof. destruct 2; simpl; rewrite ?to_of_val; naive_solver. Qed.
284

285 286
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
287
Proof.
288 289 290
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
291
Qed.
292

293
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
294
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
295
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
296

297
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
298
  to_val e1 = None  to_val e2 = None 
299
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
300
Proof.
301
  destruct Ki1, Ki2; intros; try discriminate; simplify_equality';
302
    repeat match goal with
303 304
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
305
Qed.
306

307 308 309 310 311 312
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
313
Proof.
314 315 316
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
  destruct K' as [|Ki' K']; simplify_equality'.
Ralf Jung's avatar
Ralf Jung committed
317
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
318 319
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
320
  eauto using fill_item_no_val_inj, values_head_stuck, fill_not_val.
321
Qed.
322

323 324 325
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
326
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
327

328 329
Lemma subst_empty e v : subst e "" v = e.
Proof. induction e; simpl; repeat case_decide; intuition auto with f_equal. Qed.
330 331 332 333 334 335 336 337 338 339
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
340

341
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
342
Proof.
343 344
  split.
  * eauto using heap_lang.fill_not_val.
345
  * intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
346
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
347
  * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
348 349 350
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
    rewrite heap_lang.fill_app in Heq1; apply (injective _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
351
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
352
    econstructor; eauto.
353
Qed.
354 355 356 357 358 359 360

Global Instance heap_lang_ctx_item Ki :
  LanguageCtx heap_lang (heap_lang.fill_item Ki).
Proof.
  change (LanguageCtx heap_lang (heap_lang.fill [Ki])).
  by apply _.
Qed.