cmra.v 51.4 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Robbert Krebbers's avatar
Robbert Krebbers committed
3 4
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
5 6 7 8 9 10 11 12 13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15 16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17 18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22 23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
37
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  (* valid *)
39
  mixin_cmra_valid_validN x :  x   n, {n} x;
40
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  (* monoid *)
42 43
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  mixin_cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
48
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
49 50 51
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
53

Robbert Krebbers's avatar
Robbert Krebbers committed
54 55 56 57 58 59
(** Bundeled version *)
Structure cmraT := CMRAT {
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
60
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_op : Op cmra_car;
62
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
63
  cmra_validN : ValidN cmra_car;
64
  cmra_cofe_mixin : CofeMixin cmra_car;
65
  cmra_mixin : CMRAMixin cmra_car
Robbert Krebbers's avatar
Robbert Krebbers committed
66
}.
67
Arguments CMRAT _ {_ _ _ _ _ _ _} _ _.
68 69 70 71
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Arguments cmra_pcore : simpl never.
73
Arguments cmra_op : simpl never.
74
Arguments cmra_valid : simpl never.
75 76 77
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Add Printing Constructor cmraT.
79 80 81 82
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
83
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85
Canonical Structure cmra_cofeC.

86 87 88 89 90 91
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
95 96
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
97 98
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
99 100
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
101 102 103 104
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109 110 111
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
  Proof. apply (mixin_cmra_pcore_preserving _ (cmra_mixin A)). Qed.
112 113
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
114
  Lemma cmra_extend n x y1 y2 :
115 116
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
117
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
118 119
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123 124 125 126 127
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

128
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
129 130
Class Exclusive {A : cmraT} (x : A) := exclusive0_r :  y, {0} (x  y)  False.
Arguments exclusive0_r {_} _ {_} _ _.
131

Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134 135 136 137 138 139 140 141 142
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

143
(** * CMRAs with a unit element *)
144
(** We use the notation ∅ because for most instances (maps, sets, etc) the
145
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
146
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
147 148
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150
  mixin_ucmra_unit_timeless : Timeless ;
  mixin_ucmra_pcore_unit : pcore   Some 
151
}.
152 153 154 155 156 157

Structure ucmraT := UCMRAT {
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_compl : Compl ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  ucmra_pcore : PCore ucmra_car;
159 160 161 162 163 164 165 166 167 168 169 170 171
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
  ucmra_cofe_mixin : CofeMixin ucmra_car;
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
  ucmra_mixin : UCMRAMixin ucmra_car
}.
Arguments UCMRAT _ {_ _ _ _ _ _ _ _} _ _ _.
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Arguments ucmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
172
Arguments ucmra_pcore : simpl never.
173 174 175 176 177 178 179
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
Arguments ucmra_cofe_mixin : simpl never.
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
180
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A).
Canonical Structure ucmra_cofeC.
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
  CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_timeless : Timeless ( : A).
  Proof. apply (mixin_ucmra_unit_timeless _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197 198
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
199
End ucmra_mixin.
200

201
(** * Discrete CMRAs *)
202
Class CMRADiscrete (A : cmraT) := {
203 204 205 206
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
207
(** * Morphisms *)
208
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
212
}.
213 214
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
215

216
(** * Local updates *)
Ralf Jung's avatar
Ralf Jung committed
217 218
(** The idea is that lemams taking this class will usually have L explicit,
    and leave Lv implicit - it will be inferred by the typeclass machinery. *)
219 220 221
Class LocalUpdate {A : cmraT} (Lv : A  Prop) (L : A  A) := {
  local_update_ne n :> Proper (dist n ==> dist n) L;
  local_updateN n x y : Lv x  {n} (x  y)  L (x  y) {n} L x  y
222 223 224
}.
Arguments local_updateN {_ _} _ {_} _ _ _ _ _.

225
(** * Frame preserving updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n mz,
  {n} (x ? mz)   y, P y  {n} (y ? mz).
228
Instance: Params (@cmra_updateP) 1.
229
Infix "~~>:" := cmra_updateP (at level 70).
Robbert Krebbers's avatar
Robbert Krebbers committed
230 231 232

Definition cmra_update {A : cmraT} (x y : A) :=  n mz,
  {n} (x ? mz)  {n} (y ? mz).
233
Infix "~~>" := cmra_update (at level 70).
234
Instance: Params (@cmra_update) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
235

Robbert Krebbers's avatar
Robbert Krebbers committed
236
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
237
Section cmra.
238
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
239
Implicit Types x y z : A.
240
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
241

242
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246 247 248 249 250 251
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
252
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
253 254 255
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
256
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258 259 260
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
261 262 263 264 265 266 267 268
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
269 270 271 272
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291 292 293 294
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
295 296 297
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
298 299 300 301 302 303 304
  rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP;
    split=> ? n mz; setoid_subst; naive_solver.
Qed.
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
  rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
305
Qed.
306

Robbert Krebbers's avatar
Robbert Krebbers committed
307 308 309 310
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

311
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
312
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
313 314 315
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
317
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
318 319 320
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
321
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
322 323 324 325 326 327 328 329
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
330 331 332 333
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
334 335 336 337 338 339 340 341
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
342

343 344 345 346
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

347
(** ** Exclusive elements *)
348 349 350
Lemma exclusiveN_r x `{!Exclusive x} :
   (n : nat) (y : A), {n} (x  y)  False.
Proof. intros ???%cmra_validN_le%exclusive0_r; auto with arith. Qed.
351 352 353 354 355 356 357 358
Lemma exclusiveN_l x `{!Exclusive x} :
   (n : nat) (y : A), {n} (y  x)  False.
Proof. intros ??. rewrite comm. by apply exclusiveN_r. Qed.
Lemma exclusive_r x `{!Exclusive x} :  (y : A),  (x  y)  False.
Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_r _ 0). Qed.
Lemma exclusive_l x `{!Exclusive x} :  (y : A),  (y  x)  False.
Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_l _ 0). Qed.

359
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
360 361
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
362
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
363
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
364
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
365
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
Global Instance cmra_included_trans: Transitive (@included A _ _).
367
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
369
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
371
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
372
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
373
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
374

Robbert Krebbers's avatar
Robbert Krebbers committed
375
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
376
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
378 379 380 381 382 383 384
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
385
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
386
Lemma cmra_included_r x y : y  x  y.
387
Proof. rewrite (comm op); apply cmra_included_l. Qed.
388

Robbert Krebbers's avatar
Robbert Krebbers committed
389 390 391 392 393 394 395 396 397
Lemma cmra_pcore_preserving' x y cx :
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
  destruct (cmra_pcore_preserving x y cx') as (cy&->&?); auto.
  exists cy; by rewrite Hcx.
Qed.
Lemma cmra_pcore_preservingN' n x y cx :
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
399 400 401 402 403 404 405
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
  destruct (cmra_pcore_preserving x (x  z) cx')
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
407 408
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
409
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
410
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
411
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
412
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
413
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
414
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
415
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
416
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
417

Robbert Krebbers's avatar
Robbert Krebbers committed
418
Lemma cmra_included_dist_l n x1 x2 x1' :
419
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
Proof.
421 422
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
423
Qed.
424

Robbert Krebbers's avatar
Robbert Krebbers committed
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
    destruct (cmra_pcore_preserving x y cx) as (cy&Hcy&?); auto.
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
454 455
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
  Proof.
    intros [z ->].
    apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
493
(** ** Timeless *)
494
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
495 496
Proof.
  intros ?? [x' ?].
497
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
498
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
499
Qed.
500
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
502
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
503
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
504 505
Proof.
  intros ??? z Hz.
506
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
507
  { rewrite -?Hz. by apply cmra_valid_validN. }
508
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
509
Qed.
510

511 512 513 514 515 516 517 518
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
519
  split; first by apply cmra_included_includedN.
520 521 522
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.

523
(** ** Local updates *)
524 525
Global Instance local_update_proper Lv (L : A  A) :
  LocalUpdate Lv L  Proper (() ==> ()) L.
526 527
Proof. intros; apply (ne_proper _). Qed.

528 529
Lemma local_update L `{!LocalUpdate Lv L} x y :
  Lv x   (x  y)  L (x  y)  L x  y.
530 531 532
Proof.
  by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L).
Qed.
533 534

Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
535
Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
536

Ralf Jung's avatar
Ralf Jung committed
537 538 539
Global Instance local_update_id : LocalUpdate (λ _, True) (@id A).
Proof. split; auto with typeclass_instances. Qed.

540 541
Global Instance exclusive_local_update y :
  LocalUpdate Exclusive (λ _, y) | 1000.
542
Proof. split. apply _. by intros ?????%exclusiveN_r. Qed.
543

544
(** ** Updates *)
545
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Robbert Krebbers's avatar
Robbert Krebbers committed
546
Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
547
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Proof. intros ? n mz ?; eauto. Qed.
549
Lemma cmra_updateP_compose (P Q : A  Prop) x :
550
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
551
Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
552 553 554
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
  intros; apply cmra_updateP_compose with (y =); naive_solver.
556
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557 558
Lemma cmra_updateP_weaken (P Q : A  Prop) x :
  x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
559
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561 562 563 564 565 566
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Proof.
  split.
  - intros x. by apply cmra_update_updateP, cmra_updateP_id.
  - intros x y z. rewrite !cmra_update_updateP.
    eauto using cmra_updateP_compose with subst.
Qed.
567 568 569
Lemma cmra_update_exclusive `{!Exclusive x} y:
   y  x ~~> y.
Proof. move=>??[z|]=>[/exclusiveN_r[]|_]. by apply cmra_valid_validN. Qed.
570

571
Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
572 573
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2)) 
  x1  x2 ~~>: Q.
574
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
575 576 577 578 579 580
  intros Hx1 Hx2 Hy n mz ?.
  destruct (Hx1 n (Some (x2 ? mz))) as (y1&?&?).
  { by rewrite /= -cmra_opM_assoc. }
  destruct (Hx2 n (Some (y1 ? mz))) as (y2&?&?).
  { by rewrite /= -cmra_opM_assoc (comm _ x2) cmra_opM_assoc. }
  exists (y1  y2); split; last rewrite (comm _ y1) cmra_opM_assoc; auto.
581
Qed.
582
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584
  x1 ~~>: P1  x2 ~~>: P2 
  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
585
Proof. eauto 10 using cmra_updateP_op. Qed.
586
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
587
Proof.
588
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
589
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

Section total_updates.
  Context `{CMRATotal A}.

  Lemma cmra_total_updateP x (P : A  Prop) :
    x ~~>: P   n z, {n} (x  z)   y, P y  {n} (y  z).
  Proof.
    split=> Hup; [intros n z; apply (Hup n (Some z))|].
    intros n [z|] ?; simpl; [by apply Hup|].
    destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r.
    eauto using cmra_validN_op_l.
  Qed.
  Lemma cmra_total_update x y : x ~~> y   n z, {n} (x  z)  {n} (y  z).
  Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed.

  Context `{CMRADiscrete A}.

  Lemma cmra_discrete_updateP (x : A) (P : A  Prop) :
    x ~~>: P   z,  (x  z)   y, P y   (y  z).
  Proof.
    rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
  Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
    x ~~> y   z,  (x  z)   (y  z).
  Proof.
    rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
End total_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
620 621
End cmra.

622 623
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_inhabited : Inhabited A := populate .

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
    intros x. destruct (cmra_pcore_preserving'  x ) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent ).
  Qed.
645

Robbert Krebbers's avatar
Robbert Krebbers committed
646 647 648 649 650 651
  Lemma ucmra_update_unit x : x ~~> .
  Proof.
    apply cmra_total_update=> n z. rewrite left_id; apply cmra_validN_op_r.
  Qed.
  Lemma ucmra_update_unit_alt y :  ~~> y   x, x ~~> y.
  Proof. split; [intros; trans |]; auto using ucmra_update_unit. Qed.
652
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
Hint Immediate cmra_unit_total.

(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }).
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
685

686
(** * Properties about monotone functions *)
687
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
688
Proof. repeat split; by try apply _. Qed.
689 690
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
691 692
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
693
  - apply _. 
694
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
695
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
696
Qed.
697

698 699
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
700 701
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
702
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
703
    intros [z ->].
704
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
705
  Qed.
706
  Lemma valid_preserving x :  x   f x.
707 708 709
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

710 711
(** Functors *)
Structure rFunctor := RFunctor {
712
  rFunctor_car : cofeT  cofeT  cmraT;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
Structure urFunctor := URFunctor {
  urFunctor_car : cofeT  cofeT  ucmraT;
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A.
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

769 770 771 772 773 774 775 776 777 778 779 780 781
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
782
  Lemma cmra_transport_core x : T (core x) = core (T x).
783
  Proof. by destruct H. Qed.
784
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
785
  Proof. by destruct H. Qed.
786
  Lemma cmra_transport_valid x :  T x   x.
787 788 789
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
790 791
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
792 793 794 795 796 797 798 799
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

800 801
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
802
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
803
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
804 805 806 807
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
808
  (* monoid *)
809 810
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
811 812 813 814
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  ra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
815
  ra_valid_op_l x y :  (x  y)   x
816 817
}.

818
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
819
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
820 821
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
822

823
  Instance discrete_validN : ValidN A := λ n x,  x.
824
  Definition discrete_cmra_mixin : CMRAMixin A.
825
  Proof.
826
    destruct ra_mix; split; try done.
827
    - intros x; split; first done. by move=> /(_ 0).
828
    - intros n x y1 y2 ??; by exists (y1,y2).
829 830 831
  Qed.
End discrete.

832 833 834 835 836
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Robbert Krebbers's avatar
Robbert Krebbers committed
837
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
838 839 840
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A), Proper (() ==> ()) (op x)).
  Context (core_proper: Proper (() ==> ()) (@core A _)).
  Context (valid_proper : Proper (() ==> impl) (@valid A _)).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (valid_op_l :  x y : A,  (x  y)   x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

866 867 868
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
869
  Instance unit_validN : ValidN () := λ n x, True.
Robbert Krebbers's avatar
Robbert Krebbers committed
870
  Instance unit_pcore : PCore () := λ x, Some x.
871
  Instance unit_op : Op () := λ x y, ().
872
  Lemma unit_cmra_mixin : CMRAMixin ().
Robbert Krebbers's avatar
Robbert Krebbers committed
873
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed.
874
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
875 876 877 878 879 880 881

  Instance unit_empty : Empty () := ().
  Lemma unit_ucmra_mixin : UCMRAMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmraT :=
    UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin.

882
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
883
  Proof. done. Qed.
884
  Global Instance unit_persistent (x : ()) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
885
  Proof. by constructor. Qed.
886
End unit.
887

Robbert Krebbers's avatar
Robbert Krebbers committed
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
(** ** Natural numbers *)
Section nat.
  Instance nat_valid : Valid nat := λ x, True.
  Instance