sts.v 16.6 KB
Newer Older
1
From prelude Require Export sets.
2 3
From algebra Require Export cmra.
From algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Local Arguments unit _ _ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
29
     (* TODO: This asks for ⊥ on sets: T1 ⊥ T2 := T1 ∩ T2 ⊆ ∅. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
30
     prim_step s1 s2  tok s1  T1    tok s2  T2   
Ralf Jung's avatar
Ralf Jung committed
31
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  | Frame_step T1 T2 :
34
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36 37

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
38
  closed_ne : S  ;
39
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
Definition up (s : state sts) (T : tokens sts) : states sts :=
Ralf Jung's avatar
Ralf Jung committed
43
  mkSet (rtc (frame_step T) s).
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
45
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
46

Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50
(** Tactic setup *)
Hint Resolve Step.
Hint Extern 10 (equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬equiv (A:=set _) _ _) => solve_elem_of : sts.
51 52
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
55 56 57 58 59
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
    eauto with sts; solve_elem_of.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
Ralf Jung's avatar
Ralf Jung committed
61
Proof. by intros ?? [??] ??????; split; apply framestep_mono. Qed.
62
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof.
64
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
68
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof.
71
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
  eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
76
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
78 79 80 81
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85 86 87 88 89 90 91 92 93 94 95 96

(** ** Properties of closure under frame steps *)
Lemma closed_disjoint' S T s : closed S T  s  S  tok s  T  .
Proof. intros [_ ? _]; solve_elem_of. Qed.
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
  closed S1 T1  closed S2 T2 
  T1  T2    S1  S2    closed (S1  S2) (T1  T2).
Proof.
  intros [_ ? Hstep1] [_ ? Hstep2] ?; split; [done|solve_elem_of|].
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
97 98
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101 102 103 104
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  s2  S  T2  Tf    tok s2  T2  .
Proof.
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [?? Hstep]??; split_ands; auto.
105 106
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
  - solve_elem_of -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109
Qed.

(** ** Properties of the closure operators *)
110
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Proof. constructor. Qed.
112
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
114 115
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
116
Lemma closed_up_set S T :
117
  ( s, s  S  tok s  T  )  S    closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Proof.
119
  intros HS Hne; unfold up_set; split.
120 121
  - assert ( s, s  up s T) by eauto using elem_of_up. solve_elem_of.
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
122
    specialize (HS s' Hs'); clear Hs' Hne S.
123
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
125
  - intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127
    split; [eapply rtc_r|]; eauto.
Qed.
128
Lemma closed_up_set_empty S : S    closed (up_set S ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
129
Proof. eauto using closed_up_set with sts. Qed.
130
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
Proof.
132
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
133
  apply closed_up_set; solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Qed.
135
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
136
Proof. eauto using closed_up with sts. Qed.
137
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Proof.
139
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
End sts. End sts.

Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
(* This module should never be imported, uses the module [sts] below. *)
Module sts_dra.
Import sts.

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.

Section sts_dra.
Context {sts : stsT}.
Infix "≼" := dra_included.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
  match x with auth s T => tok s  T   | frag S' T => closed S' T end.
Instance sts_unit : Unit (car sts) := λ x,
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
     S1  S2    T1  T2    frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 :
     s  S  T1  T2    auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 :
     s  S  T1  T2    frag S T1  auth s T2.
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.
Instance sts_minus : Minus (car sts) := λ x1 x2,
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (up_set S1 (T1  T2)) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T2, auth s T1 => auth s (T1  T2) (* never happens *)
  | auth s T1, auth _ T2 => frag (up s (T1  T2)) (T1  T2)
  end.

Hint Extern 10 (equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Instance sts_equivalence: Equivalence (() : relation (car sts)).
Proof.
  split.
208 209 210
  - by intros []; constructor.
  - by destruct 1; constructor.
  - destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
211 212
Qed.
Global Instance sts_dra : DRA (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
213 214
Proof.
  split.
215 216 217 218 219 220 221
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
  - by do 2 destruct 1; constructor; setoid_subst.
  - assert ( T T' S s,
222
      closed S T  s  S  tok s  T'    tok s  (T  T')  ).
223
    { intros S T T' s [??]; solve_elem_of. }
Robbert Krebbers's avatar
Robbert Krebbers committed
224
    destruct 3; simpl in *; auto using closed_op with sts.
225 226
  - intros []; simpl; eauto using closed_up, closed_up_set, closed_ne with sts.
  - intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
227
      rewrite ?disjoint_union_difference; auto using closed_up with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
    eapply closed_up_set; eauto 2 using closed_disjoint with sts.
229 230 231 232 233 234
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
235
    assert (S  up_set S   S  ) by eauto using subseteq_up_set, closed_ne.
236
    solve_elem_of.
237
  - intros [|S T]; constructor; auto with sts.
238
    assert (S  up_set S ); auto using subseteq_up_set with sts.
239
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
240 241 242
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
    + rewrite (up_closed (up_set _ _));
        eauto using closed_up_set, closed_ne with sts.
243
  - intros x y ?? (z&Hy&?&Hxz); exists (unit (x  y)); split_ands.
244
    + destruct Hxz;inversion_clear Hy;constructor;unfold up_set; solve_elem_of.
245 246 247 248
    + destruct Hxz; inversion_clear Hy; simpl;
        auto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxz; inversion_clear Hy; constructor;
        repeat match goal with
249 250 251 252
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
253
        end; auto with sts.
254
  - intros x y ?? (z&Hy&_&Hxz); destruct Hxz; inversion_clear Hy; constructor;
255
      repeat match goal with
256 257 258 259
      | |- context [ up_set ?S ?T ] =>
         unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
      | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
260
      end; auto with sts.
261
  - intros x y ?? (z&Hy&?&Hxz); destruct Hxz as [S1 S2 T1 T2| |];
Robbert Krebbers's avatar
Robbert Krebbers committed
262
      inversion Hy; clear Hy; constructor; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
263
      rewrite ?disjoint_union_difference; auto.
264
    split; [|apply intersection_greatest; auto using subseteq_up_set with sts].
Robbert Krebbers's avatar
Robbert Krebbers committed
265 266 267 268
    apply intersection_greatest; [auto with sts|].
    intros s2; rewrite elem_of_intersection.
    unfold up_set; rewrite elem_of_bind; intros (?&s1&?&?&?).
    apply closed_steps with T2 s1; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
Canonical Structure RA : cmraT := validityRA (car sts).
End sts_dra. End sts_dra.

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
Notation stsRA := (@sts_dra.RA).

Section sts_definitions.
  Context {sts : stsT}.
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsRA sts :=
    to_validity (sts_dra.auth s T).
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsRA sts :=
    to_validity (sts_dra.frag S T).
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsRA sts :=
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
Proof. (* this proof is horrible *)
  intros T1 T2 HT. rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Qed.
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
305 306
  intros S1 S2 ? T1 T2 HT; rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
308 309
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
Proof. intros T1 T2 HT. by rewrite /sts_frag_up HT. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310

Robbert Krebbers's avatar
Robbert Krebbers committed
311 312 313 314 315 316 317
(** Validity *)
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T  .
Proof. split. by move=> /(_ 0). by intros ??. Qed.
Lemma sts_frag_valid S T :  sts_frag S T  closed S T.
Proof. split. by move=> /(_ 0). by intros ??. Qed.
Lemma sts_frag_up_valid s T : tok s  T     sts_frag_up s T.
Proof. intros; by apply sts_frag_valid, closed_up. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
318

Robbert Krebbers's avatar
Robbert Krebbers committed
319 320 321
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
Proof. by move=> /(_ 0) [? [? Hdisj]]; inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
322

Robbert Krebbers's avatar
Robbert Krebbers committed
323 324 325 326 327 328 329 330 331 332 333 334
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
  intros; split; [split|constructor; solve_elem_of]; simpl.
  - intros (?&?&?); by apply closed_disjoint' with S.
  - intros; split_ands. solve_elem_of+. done. constructor; solve_elem_of.
Qed.
Lemma sts_op_auth_frag_up s T :
  tok s  T    sts_auth s   sts_frag_up s T  sts_auth s T.
Proof. intros; apply sts_op_auth_frag; auto using elem_of_up, closed_up. Qed.

Ralf Jung's avatar
Ralf Jung committed
335
Lemma sts_op_frag S1 S2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
336
  T1  T2    sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
337 338
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
339 340 341 342
  intros HT HS1 HS2. rewrite /sts_frag.
  (* FIXME why does rewrite not work?? *)
  etransitivity; last eapply to_validity_op; try done; [].
  intros Hval. constructor; last solve_elem_of. eapply closed_ne, Hval.
Ralf Jung's avatar
Ralf Jung committed
343 344
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
345 346 347
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
  step (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
  intros ?; apply validity_update; inversion 3 as [|? S ? Tf|]; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
350
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto.
351
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Qed.
Ralf Jung's avatar
Ralf Jung committed
353

Robbert Krebbers's avatar
Robbert Krebbers committed
354 355
Lemma sts_update_frag S1 S2 T :
  closed S2 T  S1  S2  sts_frag S1 T ~~> sts_frag S2 T.
356
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
  rewrite /sts_frag=> HS Hcl. apply validity_update.
358
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  - split; first done. constructor; [solve_elem_of|done].
360 361 362
  - split; first done. constructor; solve_elem_of.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
363 364
Lemma sts_update_frag_up s1 S2 T :
  closed S2 T  s1  S2  sts_frag_up s1 T ~~> sts_frag S2 T.
Ralf Jung's avatar
Ralf Jung committed
365
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
366 367 368 369 370 371 372 373 374 375
  intros; by apply sts_update_frag; [|intros ?; eauto using closed_steps].
Qed.

(** Inclusion *)
Lemma sts_frag_included S1 S2 T1 T2 :
  closed S2 T2 
  sts_frag S1 T1  sts_frag S2 T2 
  (closed S1 T1   Tf, T2  T1  Tf  T1  Tf    S2  S1  up_set S2 Tf).
Proof. (* This should use some general properties of DRAs. To be improved
when we have RAs back *)
376
  move=>Hcl2. split.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  - intros [[[Sf Tf|Sf Tf] vf Hvf] EQ].
378
    { exfalso. inversion_clear EQ as [Hv EQ']. apply EQ' in Hcl2. simpl in Hcl2.
379
      inversion Hcl2. }
380 381 382
    inversion_clear EQ as [Hv EQ'].
    move:(EQ' Hcl2)=>{EQ'} EQ. inversion_clear EQ as [|? ? ? ? HT HS].
    destruct Hv as [Hv _]. move:(Hv Hcl2)=>{Hv} [/= Hcl1  [Hclf Hdisj]].
383 384 385
    apply Hvf in Hclf. simpl in Hclf. clear Hvf.
    inversion_clear Hdisj. split; last (exists Tf; split_ands); [done..|].
    apply (anti_symm ()).
386
    + move=>s HS2. apply elem_of_intersection. split; first by apply HS.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
      by apply subseteq_up_set.
388
    + move=>s /elem_of_intersection [HS1 Hscl]. apply HS. split; first done.
389
      destruct Hscl as [s' [Hsup Hs']].
Robbert Krebbers's avatar
Robbert Krebbers committed
390
      eapply closed_steps; last (hnf in Hsup; eexact Hsup); first done.
391
      solve_elem_of +HS Hs'.
Ralf Jung's avatar
Ralf Jung committed
392
  - intros (Hcl1 & Tf & Htk & Hf & Hs).
Robbert Krebbers's avatar
Robbert Krebbers committed
393
    exists (sts_frag (up_set S2 Tf) Tf).
394 395
    split; first split; simpl;[|done|].
    + intros _. split_ands; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
396 397
      * apply closed_up_set; last by eapply closed_ne.
        move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
Ralf Jung's avatar
Ralf Jung committed
398
        solve_elem_of +Htk.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
      * constructor; last done. rewrite -Hs. by eapply closed_ne.
400 401 402
    + intros _. constructor; [ solve_elem_of +Htk | done].
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
403 404 405
Lemma sts_frag_included' S1 S2 T :
  closed S2 T  closed S1 T  S2  S1  up_set S2  
  sts_frag S1 T  sts_frag S2 T.
406
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
407 408
  intros. apply sts_frag_included; split_ands; auto.
  exists ; split_ands; done || solve_elem_of+.
409
Qed.
410
End stsRA.