lang.v 31.3 KB
Newer Older
1
From stdpp Require Export binders strings.
Ralf Jung's avatar
Ralf Jung committed
2
From stdpp Require Import gmap.
3 4 5
From iris.algebra Require Export ofe.
From iris.program_logic Require Export language ectx_language ectxi_language.
From iris.heap_lang Require Export locations.
6
Set Default Proof Using "Type".
7

Ralf Jung's avatar
Ralf Jung committed
8 9 10 11 12 13
(** heap_lang.  A fairly simple language used for common Iris examples.

- This is a right-to-left evaluated language, like CakeML and OCaml.  The reason
  for this is that it makes curried functions usable: Given a WP for [f a b], we
  know that any effects [f] might have to not matter until after *both* [a] and
  [b] are evaluated.  With left-to-right evaluation, that triple is basically
Ralf Jung's avatar
Ralf Jung committed
14
  useless unless the user let-expands [b].
Ralf Jung's avatar
Ralf Jung committed
15

16
- For prophecy variables, we annotate the reduction steps with an "observation"
17
  and tweak adequacy such that WP knows all future observations. There is
18
  another possible choice: Use non-deterministic choice when creating a prophecy
19 20
  variable ([NewProph]), and when resolving it ([Resolve]) make the
  program diverge unless the variable matches. That, however, requires an
21
  erasure proof that this endless loop does not make specifications useless.
Ralf Jung's avatar
Ralf Jung committed
22

23 24 25 26 27 28 29 30
The expression [Resolve e p v] attaches a prophecy resolution (for prophecy
variable [p] to value [v]) to the top-level head-reduction step of [e]. The
prophecy resolution happens simultaneously with the head-step being taken.
Furthermore, it is required that the head-step produces a value (otherwise
the [Resolve] is stuck), and this value is also attached to the resolution.
A prophecy variable is thus resolved to a pair containing (1) the result
value of the wrapped expression (called [e] above), and (2) the value that
was attached by the [Resolve] (called [v] above). This allows, for example,
Ralf Jung's avatar
Ralf Jung committed
31 32 33 34 35
to distinguish a resolution originating from a successful [CmpXchg] from one
originating from a failing [CmpXchg]. For example:
 - [Resolve (CmpXchg #l #n #(n+1)) #p v] will behave as [CmpXchg #l #n #(n+1)],
   which means step to a value-boole pair [(n', b)] while updating the heap, but
   in the meantime the prophecy variable [p] will be resolved to [(n', b), v)].
36 37 38 39 40 41 42 43
 - [Resolve (! #l) #p v] will behave as [! #l], that is return the value
   [w] pointed to by [l] on the heap (assuming it was allocated properly),
   but it will additionally resolve [p] to the pair [(w,v)].

Note that the sub-expressions of [Resolve e p v] (i.e., [e], [p] and [v])
are reduced as usual, from right to left. However, the evaluation of [e]
is restricted so that the head-step to which the resolution is attached
cannot be taken by the context. For example:
Ralf Jung's avatar
Ralf Jung committed
44 45
 - [Resolve (CmpXchg #l #n (#n + #1)) #p v] will first be reduced (with by a
   context-step) to [Resolve (CmpXchg #l #n #(n+1) #p v], and then behave as
46
   described above.
Ralf Jung's avatar
Ralf Jung committed
47
 - However, [Resolve ((λ: "n", CmpXchg #l "n" ("n" + #1)) #n) #p v] is stuck.
48 49 50 51 52
   Indeed, it can only be evaluated using a head-step (it is a β-redex),
   but the process does not yield a value.

The mechanism described above supports nesting [Resolve] expressions to
attach several prophecy resolutions to a head-redex. *)
Ralf Jung's avatar
Ralf Jung committed
53

54 55 56
Delimit Scope expr_scope with E.
Delimit Scope val_scope with V.

57
Module heap_lang.
58 59
Open Scope Z_scope.

60
(** Expressions and vals. *)
61
Definition proph_id := positive.
Ralf Jung's avatar
Ralf Jung committed
62

Ralf Jung's avatar
Ralf Jung committed
63 64 65 66 67
(** We have a notion of "poison" as a variant of unit that may not be compared
with anything. This is useful for erasure proofs: if we erased things to unit,
[<erased> == unit] would evaluate to true after erasure, changing program
behavior. So we erase to the poison value instead, making sure that no legal
comparisons could be affected. *)
68
Inductive base_lit : Set :=
Ralf Jung's avatar
Ralf Jung committed
69
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitPoison
70
  | LitLoc (l : loc) | LitProphecy (p: proph_id).
71
Inductive un_op : Set :=
72
  | NegOp | MinusUnOp.
73
Inductive bin_op : Set :=
74 75 76
  | PlusOp | MinusOp | MultOp | QuotOp | RemOp (* Arithmetic *)
  | AndOp | OrOp | XorOp (* Bitwise *)
  | ShiftLOp | ShiftROp (* Shifts *)
Amin Timany's avatar
Amin Timany committed
77 78
  | LeOp | LtOp | EqOp (* Relations *)
  | OffsetOp. (* Pointer offset *)
79

80
Inductive expr :=
81 82
  (* Values *)
  | Val (v : val)
83
  (* Base lambda calculus *)
84 85 86
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
87
  (* Base types and their operations *)
88 89 90
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
91
  (* Products *)
92 93 94
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
95
  (* Sums *)
96 97 98
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
99
  (* Concurrency *)
100
  | Fork (e : expr)
101
  (* Heap *)
Amin Timany's avatar
Amin Timany committed
102
  | AllocN (e1 e2 : expr) (* array length (positive number), initial value *)
103 104
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
Ralf Jung's avatar
Ralf Jung committed
105
  | CmpXchg (e0 : expr) (e1 : expr) (e2 : expr) (* Compare-exchange *)
106
  | FAA (e1 : expr) (e2 : expr) (* Fetch-and-add *)
107 108
  (* Prophecy *)
  | NewProph
109
  | Resolve (e0 : expr) (e1 : expr) (e2 : expr) (* wrapped expr, proph, val *)
110
with val :=
111
  | LitV (l : base_lit)
112
  | RecV (f x : binder) (e : expr)
113 114
  | PairV (v1 v2 : val)
  | InjLV (v : val)
115
  | InjRV (v : val).
Ralf Jung's avatar
Ralf Jung committed
116

117
Bind Scope expr_scope with expr.
118 119
Bind Scope val_scope with val.

120 121 122
(** An observation associates a prophecy variable (identifier) to a pair of
values. The first value is the one that was returned by the (atomic) operation
during which the prophecy resolution happened (typically, a boolean when the
Ralf Jung's avatar
Ralf Jung committed
123
wrapped operation is a CmpXchg). The second value is the one that the prophecy
124 125
variable was actually resolved to. *)
Definition observation : Set := proph_id * (val * val).
126

127
Notation of_val := Val (only parsing).
128

129
Definition to_val (e : expr) : option val :=
130
  match e with
131
  | Val v => Some v
Ralf Jung's avatar
Ralf Jung committed
132
  | _ => None
133 134
  end.

135 136 137 138 139 140 141 142 143 144 145 146 147 148
(** We assume the following encoding of values to 64-bit words: The least 3
significant bits of every word are a "tag", and we have 61 bits of payload,
which is enough if all pointers are 8-byte-aligned (common on 64bit
architectures). The tags have the following meaning:

0: Payload is the data for a LitV (LitInt _).
1: Payload is the data for a InjLV (LitV (LitInt _)).
2: Payload is the data for a InjRV (LitV (LitInt _)).
3: Payload is the data for a LitV (LitLoc _).
4: Payload is the data for a InjLV (LitV (LitLoc _)).
4: Payload is the data for a InjRV (LitV (LitLoc _)).
6: Payload is one of the following finitely many values, which 61 bits are more
   than enough to encode:
   LitV LitUnit, InjLV (LitV LitUnit), InjRV (LitV LitUnit),
Ralf Jung's avatar
Ralf Jung committed
149
   LitV LitPoison, InjLV (LitV LitPoison), InjRV (LitV LitPoison),
150 151 152 153 154 155 156 157 158 159
   LitV (LitBool _), InjLV (LitV (LitBool _)), InjRV (LitV (LitBool _)).
7: Value is boxed, i.e., payload is a pointer to some read-only memory area on
   the heap which stores whether this is a RecV, PairV, InjLV or InjRV and the
   relevant data for those cases. However, the boxed representation is never
   used if any of the above representations could be used.

Ignoring (as usual) the fact that we have to fit the infinite Z/loc into 61
bits, this means every value is machine-word-sized and can hence be atomically
read and written.  Also notice that the sets of boxed and unboxed values are
disjoint. *)
160 161
Definition lit_is_unboxed (l: base_lit) : Prop :=
  match l with
Ralf Jung's avatar
Ralf Jung committed
162 163
  (** Disallow comparing (erased) prophecies with (erased) prophecies, by
  considering them boxed. *)
Ralf Jung's avatar
Ralf Jung committed
164
  | LitProphecy _ | LitPoison => False
165 166
  | _ => True
  end.
167 168
Definition val_is_unboxed (v : val) : Prop :=
  match v with
169 170 171
  | LitV l => lit_is_unboxed l
  | InjLV (LitV l) => lit_is_unboxed l
  | InjRV (LitV l) => lit_is_unboxed l
172 173 174
  | _ => False
  end.

175 176 177 178 179 180 181
Instance lit_is_unboxed_dec l : Decision (lit_is_unboxed l).
Proof. destruct l; simpl; exact (decide _). Defined.
Instance val_is_unboxed_dec v : Decision (val_is_unboxed v).
Proof. destruct v as [ | | | [] | [] ]; simpl; exact (decide _). Defined.

(** We just compare the word-sized representation of two values, without looking
into boxed data.  This works out fine if at least one of the to-be-compared
182 183
values is unboxed (exploiting the fact that an unboxed and a boxed value can
never be equal because these are disjoint sets). *)
184
Definition vals_compare_safe (vl v1 : val) : Prop :=
185
  val_is_unboxed vl  val_is_unboxed v1.
186
Arguments vals_compare_safe !_ !_ /.
187

188
(** The state: heaps of vals. *)
Ralf Jung's avatar
Ralf Jung committed
189 190
Record state : Type := {
  heap: gmap loc val;
191
  used_proph_id: gset proph_id;
Ralf Jung's avatar
Ralf Jung committed
192
}.
Ralf Jung's avatar
Ralf Jung committed
193

194 195
(** Equality and other typeclass stuff *)
Lemma to_of_val v : to_val (of_val v) = Some v.
196
Proof. by destruct v. Qed.
197 198

Lemma of_to_val e v : to_val e = Some v  of_val v = e.
199
Proof. destruct e=>//=. by intros [= <-]. Qed.
200 201

Instance of_val_inj : Inj (=) (=) of_val.
202
Proof. intros ??. congruence. Qed.
203

204
Instance base_lit_eq_dec : EqDecision base_lit.
205
Proof. solve_decision. Defined.
206
Instance un_op_eq_dec : EqDecision un_op.
207
Proof. solve_decision. Defined.
208
Instance bin_op_eq_dec : EqDecision bin_op.
209
Proof. solve_decision. Defined.
210
Instance expr_eq_dec : EqDecision expr.
211
Proof.
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  refine (
   fix go (e1 e2 : expr) {struct e1} : Decision (e1 = e2) :=
     match e1, e2 with
     | Val v, Val v' => cast_if (decide (v = v'))
     | Var x, Var x' => cast_if (decide (x = x'))
     | Rec f x e, Rec f' x' e' =>
        cast_if_and3 (decide (f = f')) (decide (x = x')) (decide (e = e'))
     | App e1 e2, App e1' e2' => cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | UnOp o e, UnOp o' e' => cast_if_and (decide (o = o')) (decide (e = e'))
     | BinOp o e1 e2, BinOp o' e1' e2' =>
        cast_if_and3 (decide (o = o')) (decide (e1 = e1')) (decide (e2 = e2'))
     | If e0 e1 e2, If e0' e1' e2' =>
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
     | Pair e1 e2, Pair e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | Fst e, Fst e' => cast_if (decide (e = e'))
     | Snd e, Snd e' => cast_if (decide (e = e'))
     | InjL e, InjL e' => cast_if (decide (e = e'))
     | InjR e, InjR e' => cast_if (decide (e = e'))
     | Case e0 e1 e2, Case e0' e1' e2' =>
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
     | Fork e, Fork e' => cast_if (decide (e = e'))
Amin Timany's avatar
Amin Timany committed
234 235
     | AllocN e1 e2, AllocN e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
236 237 238
     | Load e, Load e' => cast_if (decide (e = e'))
     | Store e1 e2, Store e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
Ralf Jung's avatar
Ralf Jung committed
239
     | CmpXchg e0 e1 e2, CmpXchg e0' e1' e2' =>
240 241 242 243
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
     | FAA e1 e2, FAA e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | NewProph, NewProph => left _
244 245
     | Resolve e0 e1 e2, Resolve e0' e1' e2' =>
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
246 247 248 249 250 251 252 253 254 255 256 257 258 259
     | _, _ => right _
     end
   with gov (v1 v2 : val) {struct v1} : Decision (v1 = v2) :=
     match v1, v2 with
     | LitV l, LitV l' => cast_if (decide (l = l'))
     | RecV f x e, RecV f' x' e' =>
        cast_if_and3 (decide (f = f')) (decide (x = x')) (decide (e = e'))
     | PairV e1 e2, PairV e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | InjLV e, InjLV e' => cast_if (decide (e = e'))
     | InjRV e, InjRV e' => cast_if (decide (e = e'))
     | _, _ => right _
     end
   for go); try (clear go gov; abstract intuition congruence).
260
Defined.
261 262
Instance val_eq_dec : EqDecision val.
Proof. solve_decision. Defined.
263

264 265 266
Instance base_lit_countable : Countable base_lit.
Proof.
 refine (inj_countable' (λ l, match l with
267 268 269
  | LitInt n => (inl (inl n), None)
  | LitBool b => (inl (inr b), None)
  | LitUnit => (inr (inl false), None)
Ralf Jung's avatar
Ralf Jung committed
270
  | LitPoison => (inr (inl true), None)
271 272
  | LitLoc l => (inr (inr l), None)
  | LitProphecy p => (inr (inl false), Some p)
273
  end) (λ l, match l with
274 275 276
  | (inl (inl n), None) => LitInt n
  | (inl (inr b), None) => LitBool b
  | (inr (inl false), None) => LitUnit
Ralf Jung's avatar
Ralf Jung committed
277
  | (inr (inl true), None) => LitPoison
278
  | (inr (inr l), None) => LitLoc l
279
  | (_, Some p) => LitProphecy p
280 281 282 283 284 285 286 287 288 289
  end) _); by intros [].
Qed.
Instance un_op_finite : Countable un_op.
Proof.
 refine (inj_countable' (λ op, match op with NegOp => 0 | MinusUnOp => 1 end)
  (λ n, match n with 0 => NegOp | _ => MinusUnOp end) _); by intros [].
Qed.
Instance bin_op_countable : Countable bin_op.
Proof.
 refine (inj_countable' (λ op, match op with
290 291
  | PlusOp => 0 | MinusOp => 1 | MultOp => 2 | QuotOp => 3 | RemOp => 4
  | AndOp => 5 | OrOp => 6 | XorOp => 7 | ShiftLOp => 8 | ShiftROp => 9
Amin Timany's avatar
Amin Timany committed
292
  | LeOp => 10 | LtOp => 11 | EqOp => 12 | OffsetOp => 13
293
  end) (λ n, match n with
294 295
  | 0 => PlusOp | 1 => MinusOp | 2 => MultOp | 3 => QuotOp | 4 => RemOp
  | 5 => AndOp | 6 => OrOp | 7 => XorOp | 8 => ShiftLOp | 9 => ShiftROp
Amin Timany's avatar
Amin Timany committed
296
  | 10 => LeOp | 11 => LtOp | 12 => EqOp | _ => OffsetOp
297 298 299 300
  end) _); by intros [].
Qed.
Instance expr_countable : Countable expr.
Proof.
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
 set (enc :=
   fix go e :=
     match e with
     | Val v => GenNode 0 [gov v]
     | Var x => GenLeaf (inl (inl x))
     | Rec f x e => GenNode 1 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e]
     | App e1 e2 => GenNode 2 [go e1; go e2]
     | UnOp op e => GenNode 3 [GenLeaf (inr (inr (inl op))); go e]
     | BinOp op e1 e2 => GenNode 4 [GenLeaf (inr (inr (inr op))); go e1; go e2]
     | If e0 e1 e2 => GenNode 5 [go e0; go e1; go e2]
     | Pair e1 e2 => GenNode 6 [go e1; go e2]
     | Fst e => GenNode 7 [go e]
     | Snd e => GenNode 8 [go e]
     | InjL e => GenNode 9 [go e]
     | InjR e => GenNode 10 [go e]
     | Case e0 e1 e2 => GenNode 11 [go e0; go e1; go e2]
     | Fork e => GenNode 12 [go e]
Amin Timany's avatar
Amin Timany committed
318
     | AllocN e1 e2 => GenNode 13 [go e1; go e2]
319 320
     | Load e => GenNode 14 [go e]
     | Store e1 e2 => GenNode 15 [go e1; go e2]
Ralf Jung's avatar
Ralf Jung committed
321
     | CmpXchg e0 e1 e2 => GenNode 16 [go e0; go e1; go e2]
322 323
     | FAA e1 e2 => GenNode 17 [go e1; go e2]
     | NewProph => GenNode 18 []
324
     | Resolve e0 e1 e2 => GenNode 19 [go e0; go e1; go e2]
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
     end
   with gov v :=
     match v with
     | LitV l => GenLeaf (inr (inl l))
     | RecV f x e =>
        GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e]
     | PairV v1 v2 => GenNode 1 [gov v1; gov v2]
     | InjLV v => GenNode 2 [gov v]
     | InjRV v => GenNode 3 [gov v]
     end
   for go).
 set (dec :=
   fix go e :=
     match e with
     | GenNode 0 [v] => Val (gov v)
     | GenLeaf (inl (inl x)) => Var x
     | GenNode 1 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => Rec f x (go e)
     | GenNode 2 [e1; e2] => App (go e1) (go e2)
     | GenNode 3 [GenLeaf (inr (inr (inl op))); e] => UnOp op (go e)
     | GenNode 4 [GenLeaf (inr (inr (inr op))); e1; e2] => BinOp op (go e1) (go e2)
     | GenNode 5 [e0; e1; e2] => If (go e0) (go e1) (go e2)
     | GenNode 6 [e1; e2] => Pair (go e1) (go e2)
     | GenNode 7 [e] => Fst (go e)
     | GenNode 8 [e] => Snd (go e)
     | GenNode 9 [e] => InjL (go e)
     | GenNode 10 [e] => InjR (go e)
     | GenNode 11 [e0; e1; e2] => Case (go e0) (go e1) (go e2)
     | GenNode 12 [e] => Fork (go e)
Amin Timany's avatar
Amin Timany committed
353
     | GenNode 13 [e1; e2] => AllocN (go e1) (go e2)
354 355
     | GenNode 14 [e] => Load (go e)
     | GenNode 15 [e1; e2] => Store (go e1) (go e2)
Ralf Jung's avatar
Ralf Jung committed
356
     | GenNode 16 [e0; e1; e2] => CmpXchg (go e0) (go e1) (go e2)
357 358
     | GenNode 17 [e1; e2] => FAA (go e1) (go e2)
     | GenNode 18 [] => NewProph
359
     | GenNode 19 [e0; e1; e2] => Resolve (go e0) (go e1) (go e2)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
     | _ => Val $ LitV LitUnit (* dummy *)
     end
   with gov v :=
     match v with
     | GenLeaf (inr (inl l)) => LitV l
     | GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => RecV f x (go e)
     | GenNode 1 [v1; v2] => PairV (gov v1) (gov v2)
     | GenNode 2 [v] => InjLV (gov v)
     | GenNode 3 [v] => InjRV (gov v)
     | _ => LitV LitUnit (* dummy *)
     end
   for go).
 refine (inj_countable' enc dec _).
 refine (fix go (e : expr) {struct e} := _ with gov (v : val) {struct v} := _ for go).
 - destruct e as [v| | | | | | | | | | | | | | | | | | | |]; simpl; f_equal;
     [exact (gov v)|done..].
 - destruct v; by f_equal.
377 378 379 380
Qed.
Instance val_countable : Countable val.
Proof. refine (inj_countable of_val to_val _); auto using to_of_val. Qed.

Ralf Jung's avatar
Ralf Jung committed
381
Instance state_inhabited : Inhabited state :=
382
  populate {| heap := inhabitant; used_proph_id := inhabitant |}.
383
Instance val_inhabited : Inhabited val := populate (LitV LitUnit).
384
Instance expr_inhabited : Inhabited expr := populate (Val inhabitant).
385

386 387 388 389
Canonical Structure stateO := leibnizO state.
Canonical Structure locO := leibnizO loc.
Canonical Structure valO := leibnizO val.
Canonical Structure exprO := leibnizO expr.
390

391
(** Evaluation contexts *)
392
Inductive ectx_item :=
393 394
  | AppLCtx (v2 : val)
  | AppRCtx (e1 : expr)
395
  | UnOpCtx (op : un_op)
396 397
  | BinOpLCtx (op : bin_op) (v2 : val)
  | BinOpRCtx (op : bin_op) (e1 : expr)
398
  | IfCtx (e1 e2 : expr)
399 400
  | PairLCtx (v2 : val)
  | PairRCtx (e1 : expr)
401 402 403 404
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
405
  | CaseCtx (e1 : expr) (e2 : expr)
Amin Timany's avatar
Amin Timany committed
406 407
  | AllocNLCtx (v2 : val)
  | AllocNRCtx (e1 : expr)
408
  | LoadCtx
409 410
  | StoreLCtx (v2 : val)
  | StoreRCtx (e1 : expr)
Ralf Jung's avatar
Ralf Jung committed
411 412 413
  | CmpXchgLCtx (v1 : val) (v2 : val)
  | CmpXchgMCtx (e0 : expr) (v2 : val)
  | CmpXchgRCtx (e0 : expr) (e1 : expr)
414
  | FaaLCtx (v2 : val)
415
  | FaaRCtx (e1 : expr)
416 417 418 419 420 421 422 423
  | ResolveLCtx (ctx : ectx_item) (v1 : val) (v2 : val)
  | ResolveMCtx (e0 : expr) (v2 : val)
  | ResolveRCtx (e0 : expr) (e1 : expr).

(** Contextual closure will only reduce [e] in [Resolve e (Val _) (Val _)] if
the local context of [e] is non-empty. As a consequence, the first argument of
[Resolve] is not completely evaluated (down to a value) by contextual closure:
no head steps (i.e., surface reductions) are taken. This means that contextual
Ralf Jung's avatar
Ralf Jung committed
424 425
closure will reduce [Resolve (CmpXchg #l #n (#n + #1)) #p #v] into [Resolve
(CmpXchg #l #n #(n+1)) #p #v], but it cannot context-step any further. *)
426 427

Fixpoint fill_item (Ki : ectx_item) (e : expr) : expr :=
428
  match Ki with
429 430
  | AppLCtx v2 => App e (of_val v2)
  | AppRCtx e1 => App e1 e
431
  | UnOpCtx op => UnOp op e
432
  | BinOpLCtx op v2 => BinOp op e (Val v2)
433
  | BinOpRCtx op e1 => BinOp op e1 e
434
  | IfCtx e1 e2 => If e e1 e2
435
  | PairLCtx v2 => Pair e (Val v2)
436
  | PairRCtx e1 => Pair e1 e
437 438 439 440
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
441
  | CaseCtx e1 e2 => Case e e1 e2
Amin Timany's avatar
Amin Timany committed
442 443
  | AllocNLCtx v2 => AllocN e (Val v2)
  | AllocNRCtx e1 => AllocN e1 e
444
  | LoadCtx => Load e
445
  | StoreLCtx v2 => Store e (Val v2)
446
  | StoreRCtx e1 => Store e1 e
Ralf Jung's avatar
Ralf Jung committed
447 448 449
  | CmpXchgLCtx v1 v2 => CmpXchg e (Val v1) (Val v2)
  | CmpXchgMCtx e0 v2 => CmpXchg e0 e (Val v2)
  | CmpXchgRCtx e0 e1 => CmpXchg e0 e1 e
450
  | FaaLCtx v2 => FAA e (Val v2)
451
  | FaaRCtx e1 => FAA e1 e
452 453 454
  | ResolveLCtx K v1 v2 => Resolve (fill_item K e) (Val v1) (Val v2)
  | ResolveMCtx ex v2 => Resolve ex e (Val v2)
  | ResolveRCtx ex e1 => Resolve ex e1 e
Ralf Jung's avatar
Ralf Jung committed
455 456
  end.

457
(** Substitution *)
458
Fixpoint subst (x : string) (v : val) (e : expr)  : expr :=
459
  match e with
460 461
  | Val _ => e
  | Var y => if decide (x = y) then Val v else Var y
462
  | Rec f y e =>
463 464 465 466 467 468 469 470 471 472 473 474
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x v e else e
  | App e1 e2 => App (subst x v e1) (subst x v e2)
  | UnOp op e => UnOp op (subst x v e)
  | BinOp op e1 e2 => BinOp op (subst x v e1) (subst x v e2)
  | If e0 e1 e2 => If (subst x v e0) (subst x v e1) (subst x v e2)
  | Pair e1 e2 => Pair (subst x v e1) (subst x v e2)
  | Fst e => Fst (subst x v e)
  | Snd e => Snd (subst x v e)
  | InjL e => InjL (subst x v e)
  | InjR e => InjR (subst x v e)
  | Case e0 e1 e2 => Case (subst x v e0) (subst x v e1) (subst x v e2)
  | Fork e => Fork (subst x v e)
Amin Timany's avatar
Amin Timany committed
475
  | AllocN e1 e2 => AllocN (subst x v e1) (subst x v e2)
476 477
  | Load e => Load (subst x v e)
  | Store e1 e2 => Store (subst x v e1) (subst x v e2)
Ralf Jung's avatar
Ralf Jung committed
478
  | CmpXchg e0 e1 e2 => CmpXchg (subst x v e0) (subst x v e1) (subst x v e2)
479
  | FAA e1 e2 => FAA (subst x v e1) (subst x v e2)
480
  | NewProph => NewProph
481
  | Resolve ex e1 e2 => Resolve (subst x v ex) (subst x v e1) (subst x v e2)
482
  end.
483

484 485
Definition subst' (mx : binder) (v : val) : expr  expr :=
  match mx with BNamed x => subst x v | BAnon => id end.
486

487
(** The stepping relation *)
488 489 490
Definition un_op_eval (op : un_op) (v : val) : option val :=
  match op, v with
  | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b)
491
  | NegOp, LitV (LitInt n) => Some $ LitV $ LitInt (Z.lnot n)
492
  | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n)
493 494 495
  | _, _ => None
  end.

Amin Timany's avatar
Amin Timany committed
496
Definition bin_op_eval_int (op : bin_op) (n1 n2 : Z) : option base_lit :=
497
  match op with
Amin Timany's avatar
Amin Timany committed
498 499 500 501 502 503 504 505 506 507 508 509 510 511
  | PlusOp => Some $ LitInt (n1 + n2)
  | MinusOp => Some $ LitInt (n1 - n2)
  | MultOp => Some $ LitInt (n1 * n2)
  | QuotOp => Some $ LitInt (n1 `quot` n2)
  | RemOp => Some $ LitInt (n1 `rem` n2)
  | AndOp => Some $ LitInt (Z.land n1 n2)
  | OrOp => Some $ LitInt (Z.lor n1 n2)
  | XorOp => Some $ LitInt (Z.lxor n1 n2)
  | ShiftLOp => Some $ LitInt (n1  n2)
  | ShiftROp => Some $ LitInt (n1  n2)
  | LeOp => Some $ LitBool (bool_decide (n1  n2))
  | LtOp => Some $ LitBool (bool_decide (n1 < n2))
  | EqOp => Some $ LitBool (bool_decide (n1 = n2))
  | OffsetOp => None (* Pointer arithmetic *)
512 513 514 515 516 517 518 519 520 521 522
  end.

Definition bin_op_eval_bool (op : bin_op) (b1 b2 : bool) : option base_lit :=
  match op with
  | PlusOp | MinusOp | MultOp | QuotOp | RemOp => None (* Arithmetic *)
  | AndOp => Some (LitBool (b1 && b2))
  | OrOp => Some (LitBool (b1 || b2))
  | XorOp => Some (LitBool (xorb b1 b2))
  | ShiftLOp | ShiftROp => None (* Shifts *)
  | LeOp | LtOp => None (* InEquality *)
  | EqOp => Some (LitBool (bool_decide (b1 = b2)))
Amin Timany's avatar
Amin Timany committed
523
  | OffsetOp => None (* Pointer arithmetic *)
524 525
  end.

526 527 528 529 530 531
Definition bin_op_eval_loc (op : bin_op) (l1 : loc) (v2 : base_lit) : option base_lit :=
  match op, v2 with
  | OffsetOp, (LitInt off) => Some $ LitLoc (l1 + off)
  | _, _ => None
  end.

532
Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val :=
533
  if decide (op = EqOp) then
Ralf Jung's avatar
Ralf Jung committed
534
    (* Crucially, this compares the same way as [CmpXchg]! *)
535
    if decide (vals_compare_safe v1 v2) then
536 537 538
      Some $ LitV $ LitBool $ bool_decide (v1 = v2)
    else
      None
539 540 541 542
  else
    match v1, v2 with
    | LitV (LitInt n1), LitV (LitInt n2) => LitV <$> bin_op_eval_int op n1 n2
    | LitV (LitBool b1), LitV (LitBool b2) => LitV <$> bin_op_eval_bool op b1 b2
543
    | LitV (LitLoc l1), LitV v2 => LitV <$> bin_op_eval_loc op l1 v2
544 545
    | _, _ => None
    end.
Ralf Jung's avatar
Ralf Jung committed
546

Ralf Jung's avatar
Ralf Jung committed
547
Definition state_upd_heap (f: gmap loc val  gmap loc val) (σ: state) : state :=
548
  {| heap := f σ.(heap); used_proph_id := σ.(used_proph_id) |}.
Ralf Jung's avatar
Ralf Jung committed
549
Arguments state_upd_heap _ !_ /.
Amin Timany's avatar
Amin Timany committed
550

Ralf Jung's avatar
Ralf Jung committed
551
Definition state_upd_used_proph_id (f: gset proph_id  gset proph_id) (σ: state) : state :=
552 553
  {| heap := σ.(heap); used_proph_id := f σ.(used_proph_id) |}.
Arguments state_upd_used_proph_id _ !_ /.
Ralf Jung's avatar
Ralf Jung committed
554

Amin Timany's avatar
Amin Timany committed
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
Fixpoint heap_array (l : loc) (vs : list val) : gmap loc val :=
  match vs with
  | [] => 
  | v :: vs' => {[l := v]}  heap_array (l + 1) vs'
  end.

Lemma heap_array_singleton l v : heap_array l [v] = {[l := v]}.
Proof. by rewrite /heap_array right_id. Qed.

Lemma heap_array_lookup l vs w k :
  heap_array l vs !! k = Some w 
   j, 0  j  k = l + j  vs !! (Z.to_nat j) = Some w.
Proof.
  revert k l; induction vs as [|v' vs IH]=> l' l /=.
  { rewrite lookup_empty. naive_solver lia. }
  rewrite -insert_union_singleton_l lookup_insert_Some IH. split.
  - intros [[-> ->] | (Hl & j & ? & -> & ?)].
    { exists 0. rewrite loc_add_0. naive_solver lia. }
    exists (1 + j). rewrite loc_add_assoc !Z.add_1_l Z2Nat.inj_succ; auto with lia.
  - intros (j & ? & -> & Hil). destruct (decide (j = 0)); simplify_eq/=.
    { rewrite loc_add_0; eauto. }
    right. split.
    { rewrite -{1}(loc_add_0 l). intros ?%(inj _); lia. }
    assert (Z.to_nat j = S (Z.to_nat (j - 1))) as Hj.
    { rewrite -Z2Nat.inj_succ; last lia. f_equal; lia. }
    rewrite Hj /= in Hil.
    exists (j - 1). rewrite loc_add_assoc Z.add_sub_assoc Z.add_simpl_l.
    auto with lia.
Qed.

Lemma heap_array_map_disjoint (h : gmap loc val) (l : loc) (vs : list val) :
  ( i, (0  i)  (i < length vs)  h !! (l + i) = None) 
  (heap_array l vs) ## h.
Proof.
  intros Hdisj. apply map_disjoint_spec=> l' v1 v2.
  intros (j&?&->&Hj%lookup_lt_Some%inj_lt)%heap_array_lookup.
  move: Hj. rewrite Z2Nat.id // => ?. by rewrite Hdisj.
Qed.

594
(* [h] is added on the right here to make [state_init_heap_singleton] true. *)
Amin Timany's avatar
Amin Timany committed
595
Definition state_init_heap (l : loc) (n : Z) (v : val) (σ : state) : state :=
596 597 598 599 600 601 602 603
  state_upd_heap (λ h, heap_array l (replicate (Z.to_nat n) v)  h) σ.

Lemma state_init_heap_singleton l v σ :
  state_init_heap l 1 v σ = state_upd_heap <[l:=v]> σ.
Proof.
  destruct σ as [h p]. rewrite /state_init_heap /=. f_equiv.
  rewrite right_id insert_union_singleton_l. done.
Qed.
Amin Timany's avatar
Amin Timany committed
604

Robbert Krebbers's avatar
Robbert Krebbers committed
605
Inductive head_step : expr  state  list observation  expr  state  list expr  Prop :=
606 607 608 609 610 611 612 613 614 615 616 617
  | RecS f x e σ :
     head_step (Rec f x e) σ [] (Val $ RecV f x e) σ []
  | PairS v1 v2 σ :
     head_step (Pair (Val v1) (Val v2)) σ [] (Val $ PairV v1 v2) σ []
  | InjLS v σ :
     head_step (InjL $ Val v) σ [] (Val $ InjLV v) σ []
  | InjRS v σ :
     head_step (InjR $ Val v) σ [] (Val $ InjRV v) σ []
  | BetaS f x e1 v2 e' σ :
     e' = subst' x v2 (subst' f (RecV f x e1) e1) 
     head_step (App (Val $ RecV f x e1) (Val v2)) σ [] e' σ []
  | UnOpS op v v' σ :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
618
     un_op_eval op v = Some v' 
619 620
     head_step (UnOp op (Val v)) σ [] (Val v') σ []
  | BinOpS op v1 v2 v' σ :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
621
     bin_op_eval op v1 v2 = Some v' 
622
     head_step (BinOp op (Val v1) (Val v2)) σ [] (Val v') σ []
623
  | IfTrueS e1 e2 σ :
624
     head_step (If (Val $ LitV $ LitBool true) e1 e2) σ [] e1 σ []
625
  | IfFalseS e1 e2 σ :
626 627 628 629 630 631 632 633 634
     head_step (If (Val $ LitV $ LitBool false) e1 e2) σ [] e2 σ []
  | FstS v1 v2 σ :
     head_step (Fst (Val $ PairV v1 v2)) σ [] (Val v1) σ []
  | SndS v1 v2 σ :
     head_step (Snd (Val $ PairV v1 v2)) σ [] (Val v2) σ []
  | CaseLS v e1 e2 σ :
     head_step (Case (Val $ InjLV v) e1 e2) σ [] (App e1 (Val v)) σ []
  | CaseRS v e1 e2 σ :
     head_step (Case (Val $ InjRV v) e1 e2) σ [] (App e2 (Val v)) σ []
635
  | ForkS e σ:
636
     head_step (Fork e) σ [] (Val $ LitV LitUnit) σ [e]
Amin Timany's avatar
Amin Timany committed
637 638 639 640
  | AllocNS n v σ l :
     0 < n 
     ( i, 0  i  i < n  σ.(heap) !! (l + i) = None) 
     head_step (AllocN (Val $ LitV $ LitInt n) (Val v)) σ
641
               []
Amin Timany's avatar
Amin Timany committed
642
               (Val $ LitV $ LitLoc l) (state_init_heap l n v σ)
Ralf Jung's avatar
Ralf Jung committed
643
               []
644
  | LoadS l v σ :
Ralf Jung's avatar
Ralf Jung committed
645
     σ.(heap) !! l = Some v 
646 647 648 649
     head_step (Load (Val $ LitV $ LitLoc l)) σ [] (of_val v) σ []
  | StoreS l v σ :
     is_Some (σ.(heap) !! l) 
     head_step (Store (Val $ LitV $ LitLoc l) (Val v)) σ
650
               []
651
               (Val $ LitV LitUnit) (state_upd_heap <[l:=v]> σ)
Ralf Jung's avatar
Ralf Jung committed
652
               []
Ralf Jung's avatar
Ralf Jung committed
653
  | CmpXchgS l v1 v2 vl σ b :
654
     σ.(heap) !! l = Some vl 
655
     (* Crucially, this compares the same way as [EqOp]! *)
656 657
     vals_compare_safe vl v1 
     b = bool_decide (vl = v1) 
Ralf Jung's avatar
Ralf Jung committed
658
     head_step (CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2)) σ
659
               []
Ralf Jung's avatar
Ralf Jung committed
660
               (Val $ PairV vl (LitV $ LitBool b)) (if b then state_upd_heap <[l:=v2]> σ else σ)
Ralf Jung's avatar
Ralf Jung committed
661
               []
662
  | FaaS l i1 i2 σ :
Ralf Jung's avatar
Ralf Jung committed
663
     σ.(heap) !! l = Some (LitV (LitInt i1)) 
664
     head_step (FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2)) σ
665
               []
666
               (Val $ LitV $ LitInt i1) (state_upd_heap <[l:=LitV (LitInt (i1 + i2))]>σ)
Ralf Jung's avatar
Ralf Jung committed
667
               []
668
  | NewProphS σ p :
669
     p  σ.(used_proph_id) 
Ralf Jung's avatar
Ralf Jung committed
670
     head_step NewProph σ
671
               []
Robbert Krebbers's avatar
Robbert Krebbers committed
672
               (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} .) σ)
Ralf Jung's avatar
Ralf Jung committed
673
               []
674 675 676 677
  | ResolveS p v e σ w σ' κs ts :
     head_step e σ κs (Val v) σ' ts 
     head_step (Resolve e (Val $ LitV $ LitProphecy p) (Val w)) σ
               (κs ++ [(p, (v, w))]) (Val v) σ' ts.
Ralf Jung's avatar
Ralf Jung committed
678

679
(** Basic properties about the language *)
680
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
681
Proof. induction Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
682

683 684
Lemma fill_item_val Ki e :
  is_Some (to_val (fill_item Ki e))  is_Some (to_val e).
685
Proof. intros [v ?]. induction Ki; simplify_option_eq; eauto. Qed.
686

687
Lemma val_head_stuck e1 σ1 κ e2 σ2 efs : head_step e1 σ1 κ e2 σ2 efs  to_val e1 = None.
688
Proof. destruct 1; naive_solver. Qed.
689

690 691
Lemma head_ctx_step_val Ki e σ1 κ e2 σ2 efs :
  head_step (fill_item Ki e) σ1 κ e2 σ2 efs  is_Some (to_val e).
692
Proof. revert κ e2. induction Ki; inversion_clear 1; simplify_option_eq; eauto. Qed.
693

694
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
695
  to_val e1 = None  to_val e2 = None 
696
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
697
Proof. revert Ki1. induction Ki2, Ki1; naive_solver eauto with f_equal. Qed.
698

Amin Timany's avatar
Amin Timany committed
699
Lemma alloc_fresh v n σ :
700
  let l := fresh_locs (dom (gset loc) σ.(heap)) in
Amin Timany's avatar
Amin Timany committed
701 702 703 704 705 706 707 708 709
  0 < n 
  head_step (AllocN ((Val $ LitV $ LitInt $ n)) (Val v)) σ []
            (Val $ LitV $ LitLoc l) (state_init_heap l n v σ) [].
Proof.
  intros.
  apply AllocNS; first done.
  intros. apply (not_elem_of_dom (D := gset loc)).
  by apply fresh_locs_fresh.
Qed.
710

711 712
Lemma new_proph_id_fresh σ :
  let p := fresh σ.(used_proph_id) in
Robbert Krebbers's avatar
Robbert Krebbers committed
713
  head_step NewProph σ [] (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} .) σ) [].
714 715
Proof. constructor. apply is_fresh. Qed.

716 717 718 719 720
Lemma heap_lang_mixin : EctxiLanguageMixin of_val to_val fill_item head_step.
Proof.
  split; apply _ || eauto using to_of_val, of_to_val, val_head_stuck,
    fill_item_val, fill_item_no_val_inj, head_ctx_step_val.
Qed.
721 722 723
End heap_lang.

(** Language *)
724 725 726
Canonical Structure heap_ectxi_lang := EctxiLanguage heap_lang.heap_lang_mixin.
Canonical Structure heap_ectx_lang := EctxLanguageOfEctxi heap_ectxi_lang.
Canonical Structure heap_lang := LanguageOfEctx heap_ectx_lang.
727

728
(* Prefer heap_lang names over ectx_language names. *)
729
Export heap_lang.
730

Amin Timany's avatar
Amin Timany committed
731
(** The following lemma is not provable using the axioms of [ectxi_language].
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
The proof requires a case analysis over context items ([destruct i] on the
last line), which in all cases yields a non-value. To prove this lemma for
[ectxi_language] in general, we would require that a term of the form
[fill_item i e] is never a value. *)
Lemma to_val_fill_some K e v : to_val (fill K e) = Some v  K = []  e = Val v.
Proof.
  intro H. destruct K as [|Ki K]; first by apply of_to_val in H. exfalso.
  assert (to_val e  None)</