gmap.v 16.4 KB
Newer Older
1
From iris.algebra Require Export cmra.
2 3
From iris.prelude Require Export gmap.
From iris.algebra Require Import upred.
4

5 6
Section cofe.
Context `{Countable K} {A : cofeT}.
7
Implicit Types m : gmap K A.
8

9
Instance gmap_dist : Dist (gmap K A) := λ n m1 m2,
10
   i, m1 !! i {n} m2 !! i.
11
Program Definition gmap_chain (c : chain (gmap K A))
12
  (k : K) : chain (option A) := {| chain_car n := c n !! k |}.
13
Next Obligation. by intros c k n i ?; apply (chain_cauchy c). Qed.
14 15 16
Instance gmap_compl : Compl (gmap K A) := λ c,
  map_imap (λ i _, compl (gmap_chain c i)) (c 0).
Definition gmap_cofe_mixin : CofeMixin (gmap K A).
17 18
Proof.
  split.
19
  - intros m1 m2; split.
20 21
    + by intros Hm n k; apply equiv_dist.
    + intros Hm k; apply equiv_dist; intros n; apply Hm.
22
  - intros n; split.
23 24
    + by intros m k.
    + by intros m1 m2 ? k.
25
    + by intros m1 m2 m3 ?? k; trans (m2 !! k).
26
  - by intros n m1 m2 ? k; apply dist_S.
27
  - intros n c k; rewrite /compl /gmap_compl lookup_imap.
28
    feed inversion (λ H, chain_cauchy c 0 n H k); simpl; auto with lia.
29
    by rewrite conv_compl /=; apply reflexive_eq.
30
Qed.
31
Canonical Structure gmapC : cofeT := CofeT (gmap K A) gmap_cofe_mixin.
32
Global Instance gmap_discrete : Discrete A  Discrete gmapC.
33
Proof. intros ? m m' ? i. by apply (timeless _). Qed.
34
(* why doesn't this go automatic? *)
35
Global Instance gmapC_leibniz: LeibnizEquiv A  LeibnizEquiv gmapC.
36 37
Proof. intros; change (LeibnizEquiv (gmap K A)); apply _. Qed.

38
Global Instance lookup_ne n k :
39
  Proper (dist n ==> dist n) (lookup k : gmap K A  option A).
40
Proof. by intros m1 m2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42
Global Instance lookup_proper k :
  Proper (() ==> ()) (lookup k : gmap K A  option A) := _.
43 44 45 46
Global Instance alter_ne f k n :
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (alter f k).
Proof.
  intros ? m m' Hm k'.
47
  by destruct (decide (k = k')); simplify_map_eq; rewrite (Hm k').
48
Qed.
49
Global Instance insert_ne i n :
50
  Proper (dist n ==> dist n ==> dist n) (insert (M:=gmap K A) i).
51
Proof.
52
  intros x y ? m m' ? j; destruct (decide (i = j)); simplify_map_eq;
53 54
    [by constructor|by apply lookup_ne].
Qed.
55
Global Instance singleton_ne i n :
56 57
  Proper (dist n ==> dist n) (singletonM i : A  gmap K A).
Proof. by intros ???; apply insert_ne. Qed.
58
Global Instance delete_ne i n :
59
  Proper (dist n ==> dist n) (delete (M:=gmap K A) i).
60
Proof.
61
  intros m m' ? j; destruct (decide (i = j)); simplify_map_eq;
62 63
    [by constructor|by apply lookup_ne].
Qed.
64

65
Instance gmap_empty_timeless : Timeless ( : gmap K A).
66 67 68 69
Proof.
  intros m Hm i; specialize (Hm i); rewrite lookup_empty in Hm |- *.
  inversion_clear Hm; constructor.
Qed.
70
Global Instance gmap_lookup_timeless m i : Timeless m  Timeless (m !! i).
71
Proof.
72
  intros ? [x|] Hx; [|by symmetry; apply: timeless].
73
  assert (m {0} <[i:=x]> m)
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75
    by (by symmetry in Hx; inversion Hx; cofe_subst; rewrite insert_id).
  by rewrite (timeless m (<[i:=x]>m)) // lookup_insert.
76
Qed.
77
Global Instance gmap_insert_timeless m i x :
78 79
  Timeless x  Timeless m  Timeless (<[i:=x]>m).
Proof.
80
  intros ?? m' Hm j; destruct (decide (i = j)); simplify_map_eq.
81 82
  { by apply: timeless; rewrite -Hm lookup_insert. }
  by apply: timeless; rewrite -Hm lookup_insert_ne.
83
Qed.
84
Global Instance gmap_singleton_timeless i x :
85
  Timeless x  Timeless ({[ i := x ]} : gmap K A) := _.
86
End cofe.
87

88
Arguments gmapC _ {_ _} _.
89 90

(* CMRA *)
91 92
Section cmra.
Context `{Countable K} {A : cmraT}.
93
Implicit Types m : gmap K A.
94

95 96 97 98
Instance gmap_op : Op (gmap K A) := merge op.
Instance gmap_core : Core (gmap K A) := fmap core.
Instance gmap_valid : Valid (gmap K A) := λ m,  i,  (m !! i).
Instance gmap_validN : ValidN (gmap K A) := λ n m,  i, {n} (m !! i).
99

100
Lemma lookup_op m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
101
Proof. by apply lookup_merge. Qed.
Ralf Jung's avatar
Ralf Jung committed
102
Lemma lookup_core m i : core m !! i = core (m !! i).
103
Proof. by apply lookup_fmap. Qed.
104

105
Lemma lookup_included (m1 m2 : gmap K A) : m1  m2   i, m1 !! i  m2 !! i.
106
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109 110 111 112 113 114 115 116 117 118
  split; [by intros [m Hm] i; exists (m !! i); rewrite -lookup_op Hm|].
  revert m2. induction m1 as [|i x m Hi IH] using map_ind=> m2 Hm.
  { exists m2. by rewrite left_id. }
  destruct (IH (delete i m2)) as [m2' Hm2'].
  { intros j. move: (Hm j); destruct (decide (i = j)) as [->|].
    - intros _. rewrite Hi. apply: cmra_unit_least.
    - rewrite lookup_insert_ne // lookup_delete_ne //. }
  destruct (Hm i) as [my Hi']; simplify_map_eq.
  exists (partial_alter (λ _, my) i m2')=>j; destruct (decide (i = j)) as [->|].
  - by rewrite Hi' lookup_op lookup_insert lookup_partial_alter.
  - move: (Hm2' j). by rewrite !lookup_op lookup_delete_ne //
      lookup_insert_ne // lookup_partial_alter_ne.
119
Qed.
120

121
Definition gmap_cmra_mixin : CMRAMixin (gmap K A).
122 123
Proof.
  split.
124
  - by intros n m1 m2 m3 Hm i; rewrite !lookup_op (Hm i).
Ralf Jung's avatar
Ralf Jung committed
125
  - by intros n m1 m2 Hm i; rewrite !lookup_core (Hm i).
126
  - by intros n m1 m2 Hm ? i; rewrite -(Hm i).
127 128 129
  - intros m; split.
    + by intros ? n i; apply cmra_valid_validN.
    + intros Hm i; apply cmra_valid_validN=> n; apply Hm.
130 131 132
  - intros n m Hm i; apply cmra_validN_S, Hm.
  - by intros m1 m2 m3 i; rewrite !lookup_op assoc.
  - by intros m1 m2 i; rewrite !lookup_op comm.
Ralf Jung's avatar
Ralf Jung committed
133 134
  - by intros m i; rewrite lookup_op !lookup_core cmra_core_l.
  - by intros m i; rewrite !lookup_core cmra_core_idemp.
135
  - intros x y; rewrite !lookup_included; intros Hm i.
Ralf Jung's avatar
Ralf Jung committed
136
    by rewrite !lookup_core; apply cmra_core_preserving.
137
  - intros n m1 m2 Hm i; apply cmra_validN_op_l with (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
    by rewrite -lookup_op.
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  - intros n m m1 m2 Hm Hm12.
    assert ( i, m !! i {n} m1 !! i  m2 !! i) as Hm12'
      by (by intros i; rewrite -lookup_op).
    set (f i := cmra_extend n (m !! i) (m1 !! i) (m2 !! i) (Hm i) (Hm12' i)).
    set (f_proj i := proj1_sig (f i)).
    exists (map_imap (λ i _, (f_proj i).1) m, map_imap (λ i _, (f_proj i).2) m);
      repeat split; intros i; rewrite /= ?lookup_op !lookup_imap.
    + destruct (m !! i) as [x|] eqn:Hx; rewrite !Hx /=; [|constructor].
      rewrite -Hx; apply (proj2_sig (f i)).
    + destruct (m !! i) as [x|] eqn:Hx; rewrite /=; [apply (proj2_sig (f i))|].
      pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
      by symmetry; apply option_op_positive_dist_l with (m2 !! i).
    + destruct (m !! i) as [x|] eqn:Hx; simpl; [apply (proj2_sig (f i))|].
      pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
      by symmetry; apply option_op_positive_dist_r with (m1 !! i).
154
Qed.
155 156
Canonical Structure gmapR : cmraT :=
  CMRAT (gmap K A) gmap_cofe_mixin gmap_cmra_mixin.
157
Global Instance gmap_cmra_unit : CMRAUnit gmapR.
158 159
Proof.
  split.
160
  - by intros i; rewrite lookup_empty.
161
  - by intros m i; rewrite /= lookup_op lookup_empty (left_id_L None _).
162
  - apply gmap_empty_timeless.
163
Qed.
164
Global Instance gmap_cmra_discrete : CMRADiscrete A  CMRADiscrete gmapR.
165
Proof. split; [apply _|]. intros m ? i. by apply: cmra_discrete_valid. Qed.
166 167

(** Internalized properties *)
168
Lemma gmap_equivI {M} m1 m2 : (m1  m2)  ( i, m1 !! i  m2 !! i : uPred M).
169
Proof. by uPred.unseal. Qed.
170
Lemma gmap_validI {M} m : ( m)  ( i,  (m !! i) : uPred M).
171
Proof. by uPred.unseal. Qed.
172
End cmra.
173

174
Arguments gmapR _ {_ _} _.
175 176

Section properties.
177
Context `{Countable K} {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
Implicit Types m : gmap K A.
179 180
Implicit Types i : K.
Implicit Types a : A.
181

182
Lemma lookup_validN_Some n m i x : {n} m  m !! i {n} Some x  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
183
Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
184
Lemma lookup_valid_Some m i x :  m  m !! i  Some x   x.
185
Proof. move=> Hm Hi. move:(Hm i). by rewrite Hi. Qed.
186
Lemma insert_validN n m i x : {n} x  {n} m  {n} <[i:=x]>m.
187
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_eq. Qed.
188
Lemma insert_valid m i x :  x   m   <[i:=x]>m.
189
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_eq. Qed.
190
Lemma singleton_validN n i x : {n} ({[ i := x ]} : gmap K A)  {n} x.
191
Proof.
192
  split; [|by intros; apply insert_validN, cmra_unit_validN].
193
  by move=>/(_ i); simplify_map_eq.
194
Qed.
195 196
Lemma singleton_valid i x :  ({[ i := x ]} : gmap K A)   x.
Proof. rewrite !cmra_valid_validN. by setoid_rewrite singleton_validN. Qed.
197

198
Lemma insert_singleton_opN n m i x :
Ralf Jung's avatar
Ralf Jung committed
199
  m !! i = None  m !! i {n} Some (core x)  <[i:=x]> m {n} {[ i := x ]}  m.
200
Proof.
201 202 203
  intros Hi j; destruct (decide (i = j)) as [->|];
    [|by rewrite lookup_op lookup_insert_ne // lookup_singleton_ne // left_id].
  rewrite lookup_op lookup_insert lookup_singleton.
Ralf Jung's avatar
Ralf Jung committed
204
  by destruct Hi as [->| ->]; constructor; rewrite ?cmra_core_r.
205
Qed.
206
Lemma insert_singleton_op m i x :
Ralf Jung's avatar
Ralf Jung committed
207
  m !! i = None  m !! i  Some (core x)  <[i:=x]> m  {[ i := x ]}  m.
208
Proof. rewrite !equiv_dist; naive_solver eauto using insert_singleton_opN. Qed.
209

210
Lemma core_singleton (i : K) (x : A) :
Ralf Jung's avatar
Ralf Jung committed
211
  core ({[ i := x ]} : gmap K A) = {[ i := core x ]}.
212
Proof. apply map_fmap_singleton. Qed.
213
Lemma op_singleton (i : K) (x y : A) :
214
  {[ i := x ]}  {[ i := y ]} = ({[ i := x  y ]} : gmap K A).
215
Proof. by apply (merge_singleton _ _ _ x y). Qed.
216

217
Global Instance gmap_persistent m : ( x : A, Persistent x)  Persistent m.
218
Proof. intros ? i. by rewrite lookup_core persistent. Qed.
219
Global Instance gmap_singleton_persistent i (x : A) :
220
  Persistent x  Persistent {[ i := x ]}.
221
Proof. intros. by rewrite /Persistent core_singleton persistent. Qed.
222

Robbert Krebbers's avatar
Robbert Krebbers committed
223
Lemma singleton_includedN n m i x :
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  {[ i := x ]} {n} m   y, m !! i {n} Some y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228 229 230 231 232 233 234
  - move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton.
    case (m' !! i)=> [y|]=> Hm.
    + exists (x  y); eauto using cmra_includedN_l.
    + by exists x.
  - intros (y&Hi&[z ?]).
    exists (<[i:=z]>m)=> j; destruct (decide (i = j)) as [->|].
    + rewrite Hi lookup_op lookup_singleton lookup_insert. by constructor.
    + by rewrite lookup_op lookup_singleton_ne // lookup_insert_ne // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
Qed.
236
Lemma dom_op m1 m2 : dom (gset K) (m1  m2)  dom _ m1  dom _ m2.
237
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
  apply elem_of_equiv; intros i; rewrite elem_of_union !elem_of_dom.
239 240 241
  unfold is_Some; setoid_rewrite lookup_op.
  destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
242

243
Lemma insert_updateP (P : A  Prop) (Q : gmap K A  Prop) m i x :
244
  x ~~>: P  ( y, P y  Q (<[i:=y]>m))  <[i:=x]>m ~~>: Q.
245
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
246 247
  intros Hx%option_updateP' HP n mf Hm.
  destruct (Hx n (mf !! i)) as ([y|]&?&?); try done.
248
  { by generalize (Hm i); rewrite lookup_op; simplify_map_eq. }
249 250
  exists (<[i:=y]> m); split; first by auto.
  intros j; move: (Hm j)=>{Hm}; rewrite !lookup_op=>Hm.
251
  destruct (decide (i = j)); simplify_map_eq/=; auto.
252
Qed.
253
Lemma insert_updateP' (P : A  Prop) m i x :
254
  x ~~>: P  <[i:=x]>m ~~>: λ m',  y, m' = <[i:=y]>m  P y.
255 256 257
Proof. eauto using insert_updateP. Qed.
Lemma insert_update m i x y : x ~~> y  <[i:=x]>m ~~> <[i:=y]>m.
Proof. rewrite !cmra_update_updateP; eauto using insert_updateP with subst. Qed.
258

259
Lemma singleton_updateP (P : A  Prop) (Q : gmap K A  Prop) i x :
260
  x ~~>: P  ( y, P y  Q {[ i := y ]})  {[ i := x ]} ~~>: Q.
261 262
Proof. apply insert_updateP. Qed.
Lemma singleton_updateP' (P : A  Prop) i x :
263
  x ~~>: P  {[ i := x ]} ~~>: λ m,  y, m = {[ i := y ]}  P y.
264 265 266
Proof. apply insert_updateP'. Qed.
Lemma singleton_update i (x y : A) : x ~~> y  {[ i := x ]} ~~> {[ i := y ]}.
Proof. apply insert_update. Qed.
267

268
Lemma singleton_updateP_empty `{Empty A, !CMRAUnit A}
Robbert Krebbers's avatar
Robbert Krebbers committed
269
    (P : A  Prop) (Q : gmap K A  Prop) i :
270
   ~~>: P  ( y, P y  Q {[ i := y ]})   ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
272 273
  intros Hx HQ n gf Hg.
  destruct (Hx n (from_option  (gf !! i))) as (y&?&Hy).
Robbert Krebbers's avatar
Robbert Krebbers committed
274
  { move:(Hg i). rewrite !left_id.
Ralf Jung's avatar
Ralf Jung committed
275
    case _: (gf !! i); simpl; auto using cmra_unit_validN. }
276
  exists {[ i := y ]}; split; first by auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279 280 281
  intros i'; destruct (decide (i' = i)) as [->|].
  - rewrite lookup_op lookup_singleton.
    move:Hy; case _: (gf !! i); first done.
    by rewrite right_id.
  - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
282
Qed.
283
Lemma singleton_updateP_empty' `{Empty A, !CMRAUnit A} (P: A  Prop) i :
284
   ~~>: P   ~~>: λ m,  y, m = {[ i := y ]}  P y.
285
Proof. eauto using singleton_updateP_empty. Qed.
286

287
Section freshness.
Robbert Krebbers's avatar
Robbert Krebbers committed
288
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
289
Lemma updateP_alloc_strong (Q : gmap K A  Prop) (I : gset K) m x :
290
   x  ( i, m !! i = None  i  I  Q (<[i:=x]>m))  m ~~>: Q.
291
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
  intros ? HQ n mf Hm. set (i := fresh (I  dom (gset K) (m  mf))).
293
  assert (i  I  i  dom (gset K) m  i  dom (gset K) mf) as [?[??]].
294
  { rewrite -not_elem_of_union -dom_op -not_elem_of_union; apply is_fresh. }
295 296
  exists (<[i:=x]>m); split.
  { by apply HQ; last done; apply not_elem_of_dom. }
297 298 299 300
  rewrite insert_singleton_opN; last by left; apply not_elem_of_dom.
  rewrite -assoc -insert_singleton_opN;
    last by left; apply not_elem_of_dom; rewrite dom_op not_elem_of_union.
  by apply insert_validN; [apply cmra_valid_validN|].
301
Qed.
302
Lemma updateP_alloc (Q : gmap K A  Prop) m x :
303
   x  ( i, m !! i = None  Q (<[i:=x]>m))  m ~~>: Q.
304 305
Proof. move=>??. eapply updateP_alloc_strong with (I:=); by eauto. Qed.
Lemma updateP_alloc_strong' m x (I : gset K) :
306
   x  m ~~>: λ m',  i, i  I  m' = <[i:=x]>m  m !! i = None.
307 308
Proof. eauto using updateP_alloc_strong. Qed.
Lemma updateP_alloc' m x :
309
   x  m ~~>: λ m',  i, m' = <[i:=x]>m  m !! i = None.
310
Proof. eauto using updateP_alloc. Qed.
311 312
End freshness.

313 314
(* Allocation is a local update: Just use composition with a singleton map. *)
(* Deallocation is *not* a local update. The trouble is that if we
Ralf Jung's avatar
Ralf Jung committed
315
   own {[ i ↦ x ]}, then the frame could always own "core x", and prevent
316 317 318
   deallocation. *)

(* Applying a local update at a position we own is a local update. *)
319
Global Instance gmap_alter_update `{!LocalUpdate Lv L} i :
320
  LocalUpdate (λ m,  x, m !! i = Some x  Lv x) (alter L i).
321
Proof.
322 323 324 325
  split; first apply _.
  intros n m1 m2 (x&Hix&?) Hm j; destruct (decide (i = j)) as [->|].
  - rewrite lookup_alter !lookup_op lookup_alter Hix /=.
    move: (Hm j); rewrite lookup_op Hix.
326
    case: (m2 !! j)=>[y|] //=; constructor. by apply (local_updateN L).
327
  - by rewrite lookup_op !lookup_alter_ne // lookup_op.
328
Qed.
329 330
End properties.

331
(** Functor *)
332
Instance gmap_fmap_ne `{Countable K} {A B : cofeT} (f : A  B) n :
333 334
  Proper (dist n ==> dist n) f  Proper (dist n ==>dist n) (fmap (M:=gmap K) f).
Proof. by intros ? m m' Hm k; rewrite !lookup_fmap; apply option_fmap_ne. Qed.
335
Instance gmap_fmap_cmra_monotone `{Countable K} {A B : cmraT} (f : A  B)
336 337
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : gmap K A  gmap K B).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
338
  split; try apply _.
339
  - by intros n m ? i; rewrite lookup_fmap; apply (validN_preserving _).
340
  - intros m1 m2; rewrite !lookup_included=> Hm i.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
    by rewrite !lookup_fmap; apply: included_preserving.
342
Qed.
343 344 345 346
Definition gmapC_map `{Countable K} {A B} (f: A -n> B) :
  gmapC K A -n> gmapC K B := CofeMor (fmap f : gmapC K A  gmapC K B).
Instance gmapC_map_ne `{Countable K} {A B} n :
  Proper (dist n ==> dist n) (@gmapC_map K _ _ A B).
347 348 349 350
Proof.
  intros f g Hf m k; rewrite /= !lookup_fmap.
  destruct (_ !! k) eqn:?; simpl; constructor; apply Hf.
Qed.
Ralf Jung's avatar
Ralf Jung committed
351

352 353 354
Program Definition gmapCF K `{Countable K} (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := gmapC K (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := gmapC_map (cFunctor_map F fg)
Ralf Jung's avatar
Ralf Jung committed
355
|}.
356
Next Obligation.
357
  by intros K ?? F A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, cFunctor_ne.
358
Qed.
Ralf Jung's avatar
Ralf Jung committed
359
Next Obligation.
360 361
  intros K ?? F A B x. rewrite /= -{2}(map_fmap_id x).
  apply map_fmap_setoid_ext=>y ??; apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
362 363
Qed.
Next Obligation.
364 365 366
  intros K ?? F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -map_fmap_compose.
  apply map_fmap_setoid_ext=>y ??; apply cFunctor_compose.
Qed.
367 368
Instance gmapCF_contractive K `{Countable K} F :
  cFunctorContractive F  cFunctorContractive (gmapCF K F).
369
Proof.
370
  by intros ? A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, cFunctor_contractive.
371 372
Qed.

373 374 375
Program Definition gmapRF K `{Countable K} (F : rFunctor) : rFunctor := {|
  rFunctor_car A B := gmapR K (rFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := gmapC_map (rFunctor_map F fg)
376
|}.
377
Next Obligation.
378
  by intros K ?? F A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, rFunctor_ne.
379
Qed.
380 381 382 383 384 385 386
Next Obligation.
  intros K ?? F A B x. rewrite /= -{2}(map_fmap_id x).
  apply map_fmap_setoid_ext=>y ??; apply rFunctor_id.
Qed.
Next Obligation.
  intros K ?? F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -map_fmap_compose.
  apply map_fmap_setoid_ext=>y ??; apply rFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
387
Qed.
388 389
Instance gmapRF_contractive K `{Countable K} F :
  rFunctorContractive F  rFunctorContractive (gmapRF K F).
390
Proof.
391
  by intros ? A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, rFunctor_contractive.
392
Qed.