derived.v 39.1 KB
Newer Older
1
From iris.base_logic Require Export primitive.
2
Set Default Proof Using "Type*".
3
Import upred.uPred primitive.uPred.
4 5 6 7 8

Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Instance: Params (@uPred_iff) 1.
Infix "↔" := uPred_iff : uPred_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11 12 13 14 15 16 17 18
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, P at level 20,
   format "▷^ n  P") : uPred_scope.
Notation "▷? p P" := (uPred_laterN (Nat.b2n p) P)
  (at level 20, p at level 9, P at level 20,
   format "▷? p  P") : uPred_scope.

19 20 21 22 23
Definition uPred_always_if {M} (p : bool) (P : uPred M) : uPred M :=
  (if p then  P else P)%I.
Instance: Params (@uPred_always_if) 2.
Arguments uPred_always_if _ !_ _/.
Notation "□? p P" := (uPred_always_if p P)
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  (at level 20, p at level 9, P at level 20, format "□? p  P").
25

26 27
Definition uPred_except_0 {M} (P : uPred M) : uPred M :=  False  P.
Notation "◇ P" := (uPred_except_0 P)
28
  (at level 20, right associativity) : uPred_scope.
29 30
Instance: Params (@uPred_except_0) 1.
Typeclasses Opaque uPred_except_0.
31 32 33 34 35 36 37

Class TimelessP {M} (P : uPred M) := timelessP :  P   P.
Arguments timelessP {_} _ {_}.

Class PersistentP {M} (P : uPred M) := persistentP : P   P.
Arguments persistentP {_} _ {_}.

38
Module uPred.
39 40 41 42 43 44 45 46 47 48
Section derived.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)

(* Derived logical stuff *)
Lemma False_elim P : False  P.
49
Proof. by apply (pure_elim' False). Qed.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Lemma True_intro P : P  True.
Proof. by apply pure_intro. Qed.

Lemma and_elim_l' P Q R : (P  R)  P  Q  R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q  R)  P  Q  R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P  Q)  P  Q  R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P  R)  P  Q  R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : (P  Ψ a)  P   a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A  uPred M) : (P   a, Ψ a)   a, P  Ψ a.
Proof. move=> HP a. by rewrite HP forall_elim. Qed.

Hint Resolve pure_intro.
Hint Resolve or_elim or_intro_l' or_intro_r'.
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.

Lemma impl_intro_l P Q R : (Q  P  R)  P  Q  R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim_l P Q : (P  Q)  P  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : P  (P  Q)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : (Q  P  R)  P  Q  R.
Proof. intros; apply impl_elim with P; auto. Qed.
81
Lemma impl_entails P Q : (P  Q)%I  P  Q.
82
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
83 84
Lemma entails_impl P Q : (P  Q)  (P  Q)%I.
Proof. intro. apply impl_intro_l. auto. Qed.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

Lemma and_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply and_mono. Qed.

Lemma or_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply or_mono. Qed.

Lemma impl_mono P P' Q Q' : (Q  P)  (P'  Q')  (P  P')  Q  Q'.
Proof.
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
  apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof.
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.

Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
127 128 129
Global Instance impl_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
130 131 132
Global Instance forall_mono' A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
133 134 135
Global Instance forall_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
136
Global Instance exist_mono' A :
137 138 139 140
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
Proof. intros P1 P2; apply exist_mono. Qed.

Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
  intros P; apply (anti_symm ()).
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Qed.
177 178 179 180 181
Lemma False_impl P : (False  P)  True.
Proof.
  apply (anti_symm ()); [by auto|].
  apply impl_intro_l. rewrite left_absorb. auto.
Qed.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

Lemma exists_impl_forall {A} P (Ψ : A  uPred M) :
  (( x : A, Ψ x)  P)   x : A, Ψ x  P.
Proof.
  apply equiv_spec; split.
  - apply forall_intro=>x. by rewrite -exist_intro.
  - apply impl_intro_r, impl_elim_r', exist_elim=>x.
    apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.

Lemma or_and_l P Q R : P  Q  R  (P  Q)  (P  R).
Proof.
  apply (anti_symm ()); first auto.
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P  Q  R  (P  R)  (Q  R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P  (Q  R)  P  Q  P  R.
Proof.
  apply (anti_symm ()); last auto.
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P  Q)  R  P  R  Q  R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
Proof.
  apply (anti_symm ()).
  - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
    by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A  uPred M) : ( a, Φ a)  P   a, Φ a  P.
Proof.
  rewrite -(comm _ P) and_exist_l. apply exist_proper=>a. by rewrite comm.
Qed.
218 219 220 221 222 223 224
Lemma or_exist {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof.
  apply (anti_symm ()).
  - apply exist_elim=> a. by rewrite -!(exist_intro a).
  - apply or_elim; apply exist_elim=> a; rewrite -(exist_intro a); auto.
Qed.
225

226
Lemma pure_elim φ Q R : (Q  ⌜φ⌝)  (φ  Q  R)  Q  R.
227 228 229 230
Proof.
  intros HQ HQR. rewrite -(idemp uPred_and Q) {1}HQ.
  apply impl_elim_l', pure_elim'=> ?. by apply entails_impl, HQR.
Qed.
Ralf Jung's avatar
Ralf Jung committed
231
Lemma pure_mono φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
232 233 234
Proof. intros; apply pure_elim with φ1; eauto. Qed.
Global Instance pure_mono' : Proper (impl ==> ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
235
Lemma pure_iff φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
236
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
237
Lemma pure_intro_l φ Q R : φ  (⌜φ⌝  Q  R)  Q  R.
238
Proof. intros ? <-; auto using pure_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
239
Lemma pure_intro_r φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
240
Proof. intros ? <-; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
241
Lemma pure_intro_impl φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
242
Proof. intros ? ->. eauto using pure_intro_l, impl_elim_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
243
Lemma pure_elim_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
244
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
245
Lemma pure_elim_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
246
Proof. intros; apply pure_elim with φ; eauto. Qed.
247

Ralf Jung's avatar
Ralf Jung committed
248
Lemma pure_True (φ : Prop) : φ  ⌜φ⌝  True.
249
Proof. intros; apply (anti_symm _); auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
250
Lemma pure_False (φ : Prop) : ¬φ  ⌜φ⌝  False.
251
Proof. intros; apply (anti_symm _); eauto using pure_elim. Qed.
252

Ralf Jung's avatar
Ralf Jung committed
253
Lemma pure_and φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
254 255 256 257 258
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[??]; auto.
  - eapply (pure_elim φ1); [auto|]=> ?. eapply (pure_elim φ2); auto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
259
Lemma pure_or φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
260 261 262 263 264
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[?|?]; auto.
  - apply or_elim; eapply pure_elim; eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
265
Lemma pure_impl φ1 φ2 : ⌜φ1  φ2  (⌜φ1  ⌜φ2).
266 267 268 269
Proof.
  apply (anti_symm _).
  - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver.
  - rewrite -pure_forall_2. apply forall_intro=> ?.
270
    by rewrite -(left_id True uPred_and (_→_))%I (pure_True φ1) // impl_elim_r.
271
Qed.
Ralf Jung's avatar
Ralf Jung committed
272
Lemma pure_forall {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
273 274 275 276
Proof.
  apply (anti_symm _); auto using pure_forall_2.
  apply forall_intro=> x. eauto using pure_mono.
Qed.
Ralf Jung's avatar
Ralf Jung committed
277
Lemma pure_exist {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
278 279 280 281 282 283
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[x ?]. rewrite -(exist_intro x); auto.
  - apply exist_elim=> x. eauto using pure_mono.
Qed.

284
Lemma internal_eq_refl' {A : ofeT} (a : A) P : P  a  a.
285 286
Proof. rewrite (True_intro P). apply internal_eq_refl. Qed.
Hint Resolve internal_eq_refl'.
287
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a  b  P  a  b.
288
Proof. by intros ->. Qed.
289
Lemma internal_eq_sym {A : ofeT} (a b : A) : a  b  b  a.
290
Proof. apply (internal_eq_rewrite a b (λ b, b  a)%I); auto. solve_proper. Qed.
291 292 293
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A  uPred M) P
  {HΨ : Contractive Ψ} : (P   (a  b))  (P  Ψ a)  P  Ψ b.
Proof.
294 295
  move: HΨ=> /contractiveI HΨ Heq ?.
  apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -HΨ.
296
Qed.
297

Ralf Jung's avatar
Ralf Jung committed
298
Lemma pure_impl_forall φ P : (⌜φ⌝  P)  ( _ : φ, P).
299 300
Proof.
  apply (anti_symm _).
301
  - apply forall_intro=> ?. by rewrite pure_True // left_id.
302 303
  - apply impl_intro_l, pure_elim_l=> Hφ. by rewrite (forall_elim Hφ).
Qed.
Ralf Jung's avatar
Ralf Jung committed
304
Lemma pure_alt φ : ⌜φ⌝   _ : φ, True.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
Proof.
  apply (anti_symm _).
  - eapply pure_elim; eauto=> H. rewrite -(exist_intro H); auto.
  - by apply exist_elim, pure_intro.
Qed.
Lemma and_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); first apply forall_intro=> -[]; auto.
  apply and_intro. by rewrite (forall_elim true). by rewrite (forall_elim false).
Qed.
Lemma or_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); last apply exist_elim=> -[]; auto.
  apply or_elim. by rewrite -(exist_intro true). by rewrite -(exist_intro false).
Qed.

Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M).
Proof. unfold uPred_iff; solve_proper. Qed.
Global Instance iff_proper :
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.

Lemma iff_refl Q P : Q  P  P.
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
328
Lemma iff_equiv P Q : (P  Q)%I  (P  Q).
329 330
Proof.
  intros HPQ; apply (anti_symm ());
331
    apply impl_entails; rewrite /uPred_valid HPQ /uPred_iff; auto.
332
Qed.
333
Lemma equiv_iff P Q : (P  Q)  (P  Q)%I.
334
Proof. intros ->; apply iff_refl. Qed.
335
Lemma internal_eq_iff P Q : P  Q  P  Q.
336
Proof.
337 338
  apply (internal_eq_rewrite P Q (λ Q, P  Q))%I;
    first solve_proper; auto using iff_refl.
339 340 341 342
Qed.

(* Derived BI Stuff *)
Hint Resolve sep_mono.
343
Lemma sep_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
344
Proof. by intros; apply sep_mono. Qed.
345
Lemma sep_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
346 347 348 349 350 351
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
352
Lemma wand_mono P P' Q Q' : (Q  P)  (P'  Q')  (P - P')  Q - Q'.
353 354 355 356 357
Proof.
  intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
358 359 360
Global Instance wand_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
361 362 363 364 365 366 367 368 369 370 371 372

Global Instance sep_comm : Comm () (@uPred_sep M).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc () (@uPred_sep M).
Proof.
  intros P Q R; apply (anti_symm _); auto using sep_assoc'.
  by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto using True_sep_1, True_sep_2. Qed.
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Proof. by intros P; rewrite comm left_id. Qed.
373
Lemma sep_elim_l P Q : P  Q  P.
374
Proof. by rewrite (True_intro Q) right_id. Qed.
375 376 377
Lemma sep_elim_r P Q : P  Q  Q.
Proof. by rewrite (comm ())%I; apply sep_elim_l. Qed.
Lemma sep_elim_l' P Q R : (P  R)  P  Q  R.
378
Proof. intros ->; apply sep_elim_l. Qed.
379
Lemma sep_elim_r' P Q R : (Q  R)  P  Q  R.
380 381
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
382
Lemma sep_intro_True_l P Q R : P%I  (R  Q)  R  P  Q.
383
Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
384
Lemma sep_intro_True_r P Q R : (R  P)  Q%I  R  P  Q.
385
Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
386
Lemma sep_elim_True_l P Q R : P  (P  R  Q)  R  Q.
387
Proof. by intros HP; rewrite -HP left_id. Qed.
388
Lemma sep_elim_True_r P Q R : P  (R  P  Q)  R  Q.
389
Proof. by intros HP; rewrite -HP right_id. Qed.
390
Lemma wand_intro_l P Q R : (Q  P  R)  P  Q - R.
391
Proof. rewrite comm; apply wand_intro_r. Qed.
392
Lemma wand_elim_l P Q : (P - Q)  P  Q.
393
Proof. by apply wand_elim_l'. Qed.
394
Lemma wand_elim_r P Q : P  (P - Q)  Q.
395
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
396
Lemma wand_elim_r' P Q R : (Q  P - R)  P  Q  R.
397
Proof. intros ->; apply wand_elim_r. Qed.
398
Lemma wand_apply P Q R S : (P  Q - R)  (S  P  Q)  S  R.
Ralf Jung's avatar
Ralf Jung committed
399
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
400
Lemma wand_frame_l P Q R : (Q - R)  P  Q - P  R.
401
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
402
Lemma wand_frame_r P Q R : (Q - R)  Q  P - R  P.
403
Proof.
404
  apply wand_intro_l. rewrite ![(_  P)%I]comm -assoc.
405 406
  apply sep_mono_r, wand_elim_r.
Qed.
407
Lemma wand_diag P : (P - P)  True.
408
Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed.
409
Lemma wand_True P : (True - P)  P.
410 411
Proof.
  apply (anti_symm _); last by auto using wand_intro_l.
412
  eapply sep_elim_True_l; last by apply wand_elim_r. done.
413
Qed.
414
Lemma wand_entails P Q : (P - Q)%I  P  Q.
415 416 417
Proof.
  intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r.
Qed.
418 419
Lemma entails_wand P Q : (P  Q)  (P - Q)%I.
Proof. intro. apply wand_intro_l. auto. Qed.
420
Lemma wand_curry P Q R : (P - Q - R)  (P  Q - R).
421 422 423 424 425 426
Proof.
  apply (anti_symm _).
  - apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
  - do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.

427
Lemma sep_and P Q : (P  Q)  (P  Q).
428
Proof. auto. Qed.
429
Lemma impl_wand P Q : (P  Q)  P - Q.
430
Proof. apply wand_intro_r, impl_elim with P; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
431
Lemma pure_elim_sep_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
432
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
433
Lemma pure_elim_sep_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
434 435 436 437 438 439 440
Proof. intros; apply pure_elim with φ; eauto. Qed.

Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.

441
Lemma entails_equiv_and P Q : (P  Q  P)  (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
442
Proof. split. by intros ->; auto. intros; apply (anti_symm _); auto. Qed.
443
Lemma sep_and_l P Q R : P  (Q  R)  (P  Q)  (P  R).
444
Proof. auto. Qed.
445
Lemma sep_and_r P Q R : (P  Q)  R  (P  R)  (Q  R).
446
Proof. auto. Qed.
447
Lemma sep_or_l P Q R : P  (Q  R)  (P  Q)  (P  R).
448 449 450 451
Proof.
  apply (anti_symm ()); last by eauto 8.
  apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
452
Lemma sep_or_r P Q R : (P  Q)  R  (P  R)  (Q  R).
453
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
454
Lemma sep_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
455 456 457 458 459 460
Proof.
  intros; apply (anti_symm ()).
  - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
Qed.
461
Lemma sep_exist_r {A} (Φ: A  uPred M) Q: ( a, Φ a)  Q   a, Φ a  Q.
462
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
463
Lemma sep_forall_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
464
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
465
Lemma sep_forall_r {A} (Φ : A  uPred M) Q : ( a, Φ a)  Q   a, Φ a  Q.
466 467 468 469 470 471 472 473 474 475 476 477 478
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.

(* Always derived *)
Hint Resolve always_mono always_elim.
Global Instance always_mono' : Proper (() ==> ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.
Global Instance always_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.

Lemma always_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply always_idemp. Qed.

Ralf Jung's avatar
Ralf Jung committed
479
Lemma always_pure φ :  ⌜φ⌝  ⌜φ⌝.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
Proof. apply (anti_symm _); auto using always_pure_2. Qed.
Lemma always_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma always_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_exist_1.
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
Lemma always_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt always_forall. by apply forall_proper=> -[]. Qed.
Lemma always_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt always_exist. by apply exist_proper=> -[]. Qed.
Lemma always_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -always_and.
  apply always_mono, impl_elim with P; auto.
Qed.
500
Lemma always_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
501 502
Proof.
  apply (anti_symm ()); auto using always_elim.
503
  apply (internal_eq_rewrite a b (λ b,  (a  b))%I); auto.
504
  { intros n; solve_proper. }
505
  rewrite -(internal_eq_refl a) always_pure; auto.
506 507
Qed.

508
Lemma always_and_sep P Q :  (P  Q)   (P  Q).
509
Proof. apply (anti_symm ()); auto using always_and_sep_1. Qed.
510
Lemma always_and_sep_l' P Q :  P  Q   P  Q.
511
Proof. apply (anti_symm ()); auto using always_and_sep_l_1. Qed.
512
Lemma always_and_sep_r' P Q : P   Q  P   Q.
513
Proof. by rewrite !(comm _ P) always_and_sep_l'. Qed.
514
Lemma always_sep P Q :  (P  Q)   P   Q.
515
Proof. by rewrite -always_and_sep -always_and_sep_l' always_and. Qed.
516
Lemma always_sep_dup' P :  P   P   P.
517 518
Proof. by rewrite -always_sep -always_and_sep (idemp _). Qed.

519
Lemma always_wand P Q :  (P - Q)   P -  Q.
520
Proof. by apply wand_intro_r; rewrite -always_sep wand_elim_l. Qed.
521
Lemma always_wand_impl P Q :  (P - Q)   (P  Q).
522 523 524 525 526
Proof.
  apply (anti_symm ()); [|by rewrite -impl_wand].
  apply always_intro', impl_intro_r.
  by rewrite always_and_sep_l' always_elim wand_elim_l.
Qed.
527
Lemma always_entails_l' P Q : (P   Q)  P   Q  P.
528
Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
529
Lemma always_entails_r' P Q : (P   Q)  P  P   Q.
530 531
Proof. intros; rewrite -always_and_sep_r'; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
532 533 534 535
Lemma always_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite always_later IH. Qed.


536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
(* Later derived *)
Lemma later_proper P Q : (P  Q)   P   Q.
Proof. by intros ->. Qed.
Hint Resolve later_mono later_proper.
Global Instance later_mono' : Proper (() ==> ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.
Global Instance later_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.

Lemma later_intro P : P   P.
Proof.
  rewrite -(and_elim_l ( P) P) -(löb ( P  P)).
  apply impl_intro_l. by rewrite {1}(and_elim_r ( P)).
Qed.

Lemma later_True :  True  True.
Proof. apply (anti_symm ()); auto using later_intro. Qed.
Lemma later_forall {A} (Φ : A  uPred M) : (  a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); auto using later_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma later_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply: anti_symm; [|apply exist_elim; eauto using exist_intro].
  rewrite later_exist_false. apply or_elim; last done.
  rewrite -(exist_intro inhabitant); auto.
Qed.
Lemma later_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt later_forall. by apply forall_proper=> -[]. Qed.
Lemma later_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt later_exist. by apply exist_proper=> -[]. Qed.
Lemma later_impl P Q :  (P  Q)   P   Q.
Proof. apply impl_intro_l; rewrite -later_and; eauto using impl_elim. Qed.
572
Lemma later_wand P Q :  (P - Q)   P -  Q.
573 574 575 576 577
Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.


Robbert Krebbers's avatar
Robbert Krebbers committed
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
(* Iterated later modality *)
Global Instance laterN_ne n m : Proper (dist n ==> dist n) (@uPred_laterN M m).
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
  Proper (() ==> ()) (@uPred_laterN M m) := ne_proper _.

Lemma laterN_0 P : ^0 P  P.
Proof. done. Qed.
Lemma later_laterN n P : ^(S n) P   ^n P.
Proof. done. Qed.
Lemma laterN_later n P : ^(S n) P  ^n  P.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_plus n1 n2 P : ^(n1 + n2) P  ^n1 ^n2 P.
Proof. induction n1; simpl; auto. Qed.
Lemma laterN_le n1 n2 P : n1  n2  ^n1 P  ^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_mono n P Q : (P  Q)  ^n P  ^n Q.
Proof. induction n; simpl; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
  Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.

Lemma laterN_intro n P : P  ^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_True n : ^n True  True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_forall {A} n (Φ : A  uPred M) : (^n  a, Φ a)  ( a, ^n Φ a).
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall; auto. Qed.
Lemma laterN_exist `{Inhabited A} n (Φ : A  uPred M) :
  (^n  a, Φ a)   a, ^n Φ a.
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist; auto. Qed.
Lemma laterN_and n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_and; auto. Qed.
Lemma laterN_or n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_or; auto. Qed.
Lemma laterN_impl n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof.
  apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_sep n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep; auto. Qed.
Lemma laterN_wand n P Q : ^n (P - Q)  ^n P - ^n Q.
Proof.
  apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.

630 631 632 633 634 635 636 637 638 639 640 641 642
(* Conditional always *)
Global Instance always_if_ne n p : Proper (dist n ==> dist n) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_proper p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_mono p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.

Lemma always_if_elim p P : ?p P  P.
Proof. destruct p; simpl; auto using always_elim. Qed.
Lemma always_elim_if p P :  P  ?p P.
Proof. destruct p; simpl; auto using always_elim. Qed.

Ralf Jung's avatar
Ralf Jung committed
643
Lemma always_if_pure p φ : ?p ⌜φ⌝  ⌜φ⌝.
644 645 646 647 648 649 650
Proof. destruct p; simpl; auto using always_pure. Qed.
Lemma always_if_and p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_and. Qed.
Lemma always_if_or p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_or. Qed.
Lemma always_if_exist {A} p (Ψ : A  uPred M) : (?p  a, Ψ a)   a, ?p Ψ a.
Proof. destruct p; simpl; auto using always_exist. Qed.
651
Lemma always_if_sep p P Q : ?p (P  Q)  ?p P  ?p Q.
652 653 654 655 656 657
Proof. destruct p; simpl; auto using always_sep. Qed.
Lemma always_if_later p P : ?p  P   ?p P.
Proof. destruct p; simpl; auto using always_later. Qed.


(* True now *)
658
Global Instance except_0_ne n : Proper (dist n ==> dist n) (@uPred_except_0 M).
659
Proof. solve_proper. Qed.
660
Global Instance except_0_proper : Proper (() ==> ()) (@uPred_except_0 M).
661
Proof. solve_proper. Qed.
662
Global Instance except_0_mono' : Proper (() ==> ()) (@uPred_except_0 M).
663
Proof. solve_proper. Qed.
664 665
Global Instance except_0_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_except_0 M).
666 667
Proof. solve_proper. Qed.

668 669 670
Lemma except_0_intro P : P   P.
Proof. rewrite /uPred_except_0; auto. Qed.
Lemma except_0_mono P Q : (P  Q)   P   Q.
671
Proof. by intros ->. Qed.
672 673 674 675 676 677 678 679 680
Lemma except_0_idemp P :   P   P.
Proof. rewrite /uPred_except_0; auto. Qed.

Lemma except_0_True :  True  True.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_or P Q :  (P  Q)   P   Q.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_and P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_except_0 or_and_l. Qed.
681
Lemma except_0_sep P Q :  (P  Q)   P   Q.
682 683
Proof.
  rewrite /uPred_except_0. apply (anti_symm _).
684 685 686 687
  - apply or_elim; last by auto.
    by rewrite -!or_intro_l -always_pure -always_later -always_sep_dup'.
  - rewrite sep_or_r sep_elim_l sep_or_l; auto.
Qed.
688
Lemma except_0_forall {A} (Φ : A  uPred M) :  ( a, Φ a)   a,  Φ a.
689
Proof. apply forall_intro=> a. by rewrite (forall_elim a). Qed.
690
Lemma except_0_exist {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
691
Proof. apply exist_elim=> a. by rewrite (exist_intro a). Qed.
692 693 694 695 696 697
Lemma except_0_later P :   P   P.
Proof. by rewrite /uPred_except_0 -later_or False_or. Qed.
Lemma except_0_always P :   P    P.
Proof. by rewrite /uPred_except_0 always_or always_later always_pure. Qed.
Lemma except_0_always_if p P :  ?p P  ?p  P.
Proof. destruct p; simpl; auto using except_0_always. Qed.
698
Lemma except_0_frame_l P Q : P   Q   (P  Q).
699
Proof. by rewrite {1}(except_0_intro P) except_0_sep. Qed.
700
Lemma except_0_frame_r P Q :  P  Q   (P  Q).
701
Proof. by rewrite {1}(except_0_intro Q) except_0_sep. Qed.
702 703 704 705 706 707 708 709 710 711 712 713

(* Own and valid derived *)
Lemma always_ownM (a : M) : Persistent a   uPred_ownM a  uPred_ownM a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  by rewrite {1}always_ownM_core persistent_core.
Qed.
Lemma ownM_invalid (a : M) : ¬ {0} a  uPred_ownM a  False.
Proof. by intros; rewrite ownM_valid cmra_valid_elim. Qed.
Global Instance ownM_mono : Proper (flip () ==> ()) (@uPred_ownM M).
Proof. intros a b [b' ->]. rewrite ownM_op. eauto. Qed.
Lemma ownM_empty' : uPred_ownM   True.
714
Proof. apply (anti_symm _); first by auto. apply ownM_empty. Qed.
715 716 717 718 719 720 721 722 723 724 725
Lemma always_cmra_valid {A : cmraT} (a : A) :   a   a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  apply:always_cmra_valid_1.
Qed.

(** * Derived rules *)
Global Instance bupd_mono' : Proper (() ==> ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
Global Instance bupd_flip_mono' : Proper (flip () ==> flip ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
726
Lemma bupd_frame_l R Q : (R  |==> Q) == R  Q.
727
Proof. rewrite !(comm _ R); apply bupd_frame_r. Qed.
728
Lemma bupd_wand_l P Q : (P - Q)  (|==> P) == Q.
729
Proof. by rewrite bupd_frame_l wand_elim_l. Qed.
730
Lemma bupd_wand_r P Q : (|==> P)  (P - Q) == Q.
731
Proof. by rewrite bupd_frame_r wand_elim_r. Qed.
732
Lemma bupd_sep P Q : (|==> P)  (|==> Q) == P  Q.
733 734 735 736 737 738
Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed.
Lemma bupd_ownM_update x y : x ~~> y  uPred_ownM x  |==> uPred_ownM y.
Proof.
  intros; rewrite (bupd_ownM_updateP _ (y =)); last by apply cmra_update_updateP.
  by apply bupd_mono, exist_elim=> y'; apply pure_elim_l=> ->.
Qed.
739
Lemma except_0_bupd P :  (|==> P)  (|==>  P).
740
Proof.
741
  rewrite /uPred_except_0. apply or_elim; auto using bupd_mono.
742 743 744 745
  by rewrite -bupd_intro -or_intro_l.
Qed.

(* Timeless instances *)
Ralf Jung's avatar
Ralf Jung committed
746
Global Instance pure_timeless φ : TimelessP (⌜φ⌝ : uPred M)%I.
747 748 749 750 751 752 753
Proof.
  rewrite /TimelessP pure_alt later_exist_false. by setoid_rewrite later_True.
Qed.
Global Instance valid_timeless {A : cmraT} `{CMRADiscrete A} (a : A) :
  TimelessP ( a : uPred M)%I.
Proof. rewrite /TimelessP !discrete_valid. apply (timelessP _). Qed.
Global Instance and_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
754
Proof. intros; rewrite /TimelessP except_0_and later_and; auto. Qed.
755
Global Instance or_timeless P Q : TimelessP P  TimelessP Q  TimelessP (P  Q).
756
Proof. intros; rewrite /TimelessP except_0_or later_or; auto. Qed.
757 758 759 760 761
Global Instance impl_timeless P Q : TimelessP Q  TimelessP (P  Q).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, impl_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
762
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
763 764
  by rewrite assoc (comm _ _ P) -assoc !impl_elim_r.
Qed.
765
Global Instance sep_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
766
Proof. intros; rewrite /TimelessP except_0_sep later_sep; auto. Qed.
767
Global Instance wand_timeless P Q : TimelessP Q  TimelessP (P - Q).
768 769 770 771
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, wand_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
772
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
773 774 775 776 777 778 779 780 781
  rewrite -(always_pure) -always_later always_and_sep_l'.
  by rewrite assoc (comm _ _ P) -assoc -always_and_sep_l' impl_elim_r wand_elim_r.
Qed.
Global Instance forall_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono; first done. apply forall_intro=> x.
  rewrite -(löb (Ψ x)); apply impl_intro_l.
782
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
783 784 785 786 787 788
  by rewrite impl_elim_r (forall_elim x).
Qed.
Global Instance exist_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> ?. rewrite later_exist_false. apply or_elim.
789
  - rewrite /uPred_except_0; auto.
790 791 792
  - apply exist_elim=> x. rewrite -(exist_intro x); auto.
Qed.
Global Instance always_timeless P : TimelessP P  TimelessP ( P).
793
Proof. intros; rewrite /TimelessP except_0_always -always_later; auto. Qed.
794 795
Global Instance always_if_timeless p P : TimelessP P  TimelessP (?p P).
Proof. destruct p; apply _. Qed.
796
Global Instance eq_timeless {A : ofeT} (a b : A) :
797 798 799 800 801
  Timeless a  TimelessP (a  b : uPred M)%I.
Proof. intros. rewrite /TimelessP !timeless_eq. apply (timelessP _). Qed.
Global Instance ownM_timeless (a : M) : Timeless a  TimelessP (uPred_ownM a).