list.v 19.2 KB
Newer Older
1
From iris.algebra Require Export cmra.
2
From iris.prelude Require Export list.
3
4
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import updates local_updates.
5
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
6
7

Section cofe.
8
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11

Instance list_dist : Dist (list A) := λ n, Forall2 (dist n).

12
13
14
Lemma list_dist_lookup n l1 l2 : l1 {n} l2   i, l1 !! i {n} l2 !! i.
Proof. setoid_rewrite dist_option_Forall2. apply Forall2_lookup. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
15
16
17
18
19
20
21
Global Instance cons_ne n : Proper (dist n ==> dist n ==> dist n) (@cons A) := _.
Global Instance app_ne n : Proper (dist n ==> dist n ==> dist n) (@app A) := _.
Global Instance length_ne n : Proper (dist n ==> (=)) (@length A) := _.
Global Instance tail_ne n : Proper (dist n ==> dist n) (@tail A) := _.
Global Instance take_ne n : Proper (dist n ==> dist n) (@take A n) := _.
Global Instance drop_ne n : Proper (dist n ==> dist n) (@drop A n) := _.
Global Instance list_lookup_ne n i :
22
  Proper (dist n ==> dist n) (lookup (M:=list A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
25
Proof. intros ???. by apply dist_option_Forall2, Forall2_lookup. Qed.
Global Instance list_alter_ne n f i :
  Proper (dist n ==> dist n) f 
26
  Proper (dist n ==> dist n) (alter (M:=list A) f i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Global Instance list_insert_ne n i :
28
  Proper (dist n ==> dist n ==> dist n) (insert (M:=list A) i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
31
Global Instance list_inserts_ne n i :
  Proper (dist n ==> dist n ==> dist n) (@list_inserts A i) := _.
Global Instance list_delete_ne n i :
32
  Proper (dist n ==> dist n) (delete (M:=list A) i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
35
36
37
38
39
40
41
42
43
44
45
Global Instance option_list_ne n : Proper (dist n ==> dist n) (@option_list A).
Proof. intros ???; by apply Forall2_option_list, dist_option_Forall2. Qed.
Global Instance list_filter_ne n P `{ x, Decision (P x)} :
  Proper (dist n ==> iff) P 
  Proper (dist n ==> dist n) (filter (B:=list A) P) := _.
Global Instance replicate_ne n :
  Proper (dist n ==> dist n) (@replicate A n) := _.
Global Instance reverse_ne n : Proper (dist n ==> dist n) (@reverse A) := _.
Global Instance last_ne n : Proper (dist n ==> dist n) (@last A).
Proof. intros ???; by apply dist_option_Forall2, Forall2_last. Qed.
Global Instance resize_ne n :
  Proper (dist n ==> dist n ==> dist n) (@resize A n) := _.

46
47
48
49
50
51
52
53
54
55
Definition list_ofe_mixin : OfeMixin (list A).
Proof.
  split.
  - intros l k. rewrite equiv_Forall2 -Forall2_forall.
    split; induction 1; constructor; intros; try apply equiv_dist; auto.
  - apply _.
  - rewrite /dist /list_dist. eauto using Forall2_impl, dist_S.
Qed.
Canonical Structure listC := OfeT (list A) list_ofe_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
56
Program Definition list_chain
57
    (c : chain listC) (x : A) (k : nat) : chain A :=
58
  {| chain_car n := from_option id x (c n !! k) |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
Next Obligation. intros c x k n i ?. by rewrite /= (chain_cauchy c n i). Qed.
60
Definition list_compl `{Cofe A} : Compl listC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
61
62
63
64
  match c 0 with
  | [] => []
  | x :: _ => compl  list_chain c x <$> seq 0 (length (c 0))
  end.
65
66
67
68
69
70
71
72
73
74
75
76
77
Global Program Instance list_cofe `{Cofe A} : Cofe listC :=
  {| compl := list_compl |}.
Next Obligation.
  intros ? n c; rewrite /compl /list_compl.
  destruct (c 0) as [|x l] eqn:Hc0 at 1.
  { by destruct (chain_cauchy c 0 n); auto with omega. }
  rewrite -(λ H, length_ne _ _ _ (chain_cauchy c 0 n H)); last omega.
  apply Forall2_lookup=> i. rewrite -dist_option_Forall2 list_lookup_fmap.
  destruct (decide (i < length (c n))); last first.
  { rewrite lookup_seq_ge ?lookup_ge_None_2; auto with omega. }
  rewrite lookup_seq //= (conv_compl n (list_chain c _ _)) /=.
  destruct (lookup_lt_is_Some_2 (c n) i) as [? Hcn]; first done.
  by rewrite Hcn.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Qed.
79

Robbert Krebbers's avatar
Robbert Krebbers committed
80
81
82
83
84
85
86
87
88
89
90
91
Global Instance list_discrete : Discrete A  Discrete listC.
Proof. induction 2; constructor; try apply (timeless _); auto. Qed.

Global Instance nil_timeless : Timeless (@nil A).
Proof. inversion_clear 1; constructor. Qed.
Global Instance cons_timeless x l : Timeless x  Timeless l  Timeless (x :: l).
Proof. intros ??; inversion_clear 1; constructor; by apply timeless. Qed.
End cofe.

Arguments listC : clear implicits.

(** Functor *)
92
Lemma list_fmap_ext_ne {A} {B : ofeT} (f g : A  B) (l : list A) n :
93
94
  ( x, f x {n} g x)  f <$> l {n} g <$> l.
Proof. intros Hf. by apply Forall2_fmap, Forall_Forall2, Forall_true. Qed.
95
Instance list_fmap_ne {A B : ofeT} (f : A  B) n:
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (fmap (M:=list) f).
97
Proof. intros Hf l k ?; by eapply Forall2_fmap, Forall2_impl; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
100
Definition listC_map {A B} (f : A -n> B) : listC A -n> listC B :=
  CofeMor (fmap f : listC A  listC B).
Instance listC_map_ne A B n : Proper (dist n ==> dist n) (@listC_map A B).
101
Proof. intros f g ? l. by apply list_fmap_ext_ne. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
103
104
105
106
107
108
109
110
111

Program Definition listCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := listC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := listC_map (cFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(list_fmap_id x).
112
  apply list_fmap_equiv_ext=>y. apply cFunctor_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
114
115
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose.
116
  apply list_fmap_equiv_ext=>y; apply cFunctor_compose.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
120
121
122
123
Qed.

Instance listCF_contractive F :
  cFunctorContractive F  cFunctorContractive (listCF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_contractive.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
126

(* CMRA *)
Section cmra.
127
  Context {A : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
131
132
133
134
135
136
137
  Implicit Types l : list A.
  Local Arguments op _ _ !_ !_ / : simpl nomatch.

  Instance list_op : Op (list A) :=
    fix go l1 l2 := let _ : Op _ := @go in
    match l1, l2 with
    | [], _ => l2
    | _, [] => l1
    | x :: l1, y :: l2 => x  y :: l1  l2
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
  Instance list_pcore : PCore (list A) := λ l, Some (core <$> l).
Robbert Krebbers's avatar
Robbert Krebbers committed
139
140
141
142

  Instance list_valid : Valid (list A) := Forall (λ x,  x).
  Instance list_validN : ValidN (list A) := λ n, Forall (λ x, {n} x).

143
144
145
146
147
148
149
150
151
  Lemma cons_valid l x :  (x :: l)   x   l.
  Proof. apply Forall_cons. Qed.
  Lemma cons_validN n l x : {n} (x :: l)  {n} x  {n} l.
  Proof. apply Forall_cons. Qed.
  Lemma app_valid l1 l2 :  (l1 ++ l2)   l1   l2.
  Proof. apply Forall_app. Qed.
  Lemma app_validN n l1 l2 : {n} (l1 ++ l2)  {n} l1  {n} l2.
  Proof. apply Forall_app. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  Lemma list_lookup_valid l :  l   i,  (l !! i).
  Proof.
    rewrite {1}/valid /list_valid Forall_lookup; split.
    - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|].
    - intros Hl i x Hi. move: (Hl i); by rewrite Hi.
  Qed.
  Lemma list_lookup_validN n l : {n} l   i, {n} (l !! i).
  Proof.
    rewrite {1}/validN /list_validN Forall_lookup; split.
    - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|].
    - intros Hl i x Hi. move: (Hl i); by rewrite Hi.
  Qed.
  Lemma list_lookup_op l1 l2 i : (l1  l2) !! i = l1 !! i  l2 !! i.
  Proof.
    revert i l2. induction l1 as [|x l1]; intros [|i] [|y l2];
      by rewrite /= ?left_id_L ?right_id_L.
  Qed.
  Lemma list_lookup_core l i : core l !! i = core (l !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
170
171
172
173
  Proof.
    rewrite /core /= list_lookup_fmap.
    destruct (l !! i); by rewrite /= ?Some_core.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

  Lemma list_lookup_included l1 l2 : l1  l2   i, l1 !! i  l2 !! i.
  Proof.
    split.
    { intros [l Hl] i. exists (l !! i). by rewrite Hl list_lookup_op. }
    revert l1. induction l2 as [|y l2 IH]=>-[|x l1] Hl.
    - by exists [].
    - destruct (Hl 0) as [[z|] Hz]; inversion Hz.
    - by exists (y :: l2).
    - destruct (IH l1) as [l3 ?]; first (intros i; apply (Hl (S i))).
      destruct (Hl 0) as [[z|] Hz]; inversion_clear Hz; simplify_eq/=.
      + exists (z :: l3); by constructor.
      + exists (core x :: l3); constructor; by rewrite ?cmra_core_r.
  Qed.

  Definition list_cmra_mixin : CMRAMixin (list A).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
192
    apply cmra_total_mixin.
    - eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
194
    - intros n l l1 l2; rewrite !list_dist_lookup=> Hl i.
      by rewrite !list_lookup_op Hl.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
    - intros n l1 l2 Hl; by rewrite /core /= Hl.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    - intros n l1 l2; rewrite !list_dist_lookup !list_lookup_validN=> Hl ? i.
      by rewrite -Hl.
    - intros l. rewrite list_lookup_valid. setoid_rewrite list_lookup_validN.
      setoid_rewrite cmra_valid_validN. naive_solver.
    - intros n x. rewrite !list_lookup_validN. auto using cmra_validN_S.
    - intros l1 l2 l3; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_op assoc.
    - intros l1 l2; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_op comm.
    - intros l; rewrite list_equiv_lookup=> i.
      by rewrite list_lookup_op list_lookup_core cmra_core_l.
    - intros l; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_core cmra_core_idemp.
    - intros l1 l2; rewrite !list_lookup_included=> Hl i.
210
      rewrite !list_lookup_core. by apply cmra_core_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
    - intros n l1 l2. rewrite !list_lookup_validN.
      setoid_rewrite list_lookup_op. eauto using cmra_validN_op_l.
213
214
215
216
217
218
219
220
    - intros n l.
      induction l as [|x l IH]=> -[|y1 l1] [|y2 l2] Hl; inversion_clear 1.
      + by exists [], [].
      + exists [], (x :: l); by repeat constructor.
      + exists (x :: l), []; by repeat constructor.
      + inversion_clear Hl. destruct (IH l1 l2) as (l1'&l2'&?&?&?),
          (cmra_extend n x y1 y2) as (y1'&y2'&?&?&?); simplify_eq/=; auto.
        exists (y1' :: l1'), (y2' :: l2'); repeat constructor; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
  Qed.
222
  Canonical Structure listR := CMRAT (list A) list_ofe_mixin list_cmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
224

  Global Instance empty_list : Empty (list A) := [].
225
  Definition list_ucmra_mixin : UCMRAMixin (list A).
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
  Proof.
    split.
    - constructor.
    - by intros l.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
    - by constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  Qed.
232
  Canonical Structure listUR :=
233
    UCMRAT (list A) list_ofe_mixin list_cmra_mixin list_ucmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236
237
238
239
240
241
242

  Global Instance list_cmra_discrete : CMRADiscrete A  CMRADiscrete listR.
  Proof.
    split; [apply _|]=> l; rewrite list_lookup_valid list_lookup_validN=> Hl i.
    by apply cmra_discrete_valid.
  Qed.

  Global Instance list_persistent l : ( x : A, Persistent x)  Persistent l.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
    intros ?; constructor; apply list_equiv_lookup=> i.
    by rewrite list_lookup_core (persistent_core (l !! i)).
Robbert Krebbers's avatar
Robbert Krebbers committed
245
246
247
  Qed.

  (** Internalized properties *)
248
  Lemma list_equivI {M} l1 l2 : l1  l2  ( i, l1 !! i  l2 !! i : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
249
  Proof. uPred.unseal; constructor=> n x ?. apply list_dist_lookup. Qed.
250
  Lemma list_validI {M} l :  l  ( i,  (l !! i) : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
253
254
  Proof. uPred.unseal; constructor=> n x ?. apply list_lookup_validN. Qed.
End cmra.

Arguments listR : clear implicits.
255
Arguments listUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
256

257
Instance list_singletonM {A : ucmraT} : SingletonM nat A (list A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
258
259
260
  replicate n  ++ [x].

Section properties.
261
  Context {A : ucmraT}.
262
  Implicit Types l : list A.
263
  Implicit Types x y z : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
264
265
  Local Arguments op _ _ !_ !_ / : simpl nomatch.
  Local Arguments cmra_op _ !_ !_ / : simpl nomatch.
266
  Local Arguments ucmra_op _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
267

268
  Lemma list_lookup_opM l mk i : (l ? mk) !! i = l !! i  (mk = (!! i)).
269
270
  Proof. destruct mk; by rewrite /= ?list_lookup_op ?right_id_L. Qed.

271
272
273
274
275
  Global Instance list_op_nil_l : LeftId (=) (@nil A) op.
  Proof. done. Qed.
  Global Instance list_op_nil_r : RightId (=) (@nil A) op.
  Proof. by intros []. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
276
  Lemma list_op_app l1 l2 l3 :
277
    (l1 ++ l3)  l2 = (l1  take (length l1) l2) ++ (l3  drop (length l1) l2).
Robbert Krebbers's avatar
Robbert Krebbers committed
278
279
  Proof.
    revert l2 l3.
280
    induction l1 as [|x1 l1]=> -[|x2 l2] [|x3 l3]; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
281
  Qed.
282
283
284
  Lemma list_op_app_le l1 l2 l3 :
    length l2  length l1  (l1 ++ l3)  l2 = (l1  l2) ++ l3.
  Proof. intros ?. by rewrite list_op_app take_ge // drop_ge // right_id_L. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
285
286
287
288
289
290
291
292
293
294
295

  Lemma list_lookup_validN_Some n l i x : {n} l  l !! i {n} Some x  {n} x.
  Proof. move=> /list_lookup_validN /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed.
  Lemma list_lookup_valid_Some l i x :  l  l !! i  Some x   x.
  Proof. move=> /list_lookup_valid /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed.

  Lemma list_op_length l1 l2 : length (l1  l2) = max (length l1) (length l2).
  Proof. revert l2. induction l1; intros [|??]; f_equal/=; auto. Qed.

  Lemma replicate_valid n (x : A) :  x   replicate n x.
  Proof. apply Forall_replicate. Qed.
296
297
  Global Instance list_singletonM_ne n i :
    Proper (dist n ==> dist n) (@list_singletonM A i).
298
  Proof. intros l1 l2 ?. apply Forall2_app; by repeat constructor. Qed.
299
300
  Global Instance list_singletonM_proper i :
    Proper (() ==> ()) (list_singletonM i) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
301

302
  Lemma elem_of_list_singletonM i z x : z  {[i := x]}  z =   z = x.
303
304
305
  Proof.
    rewrite elem_of_app elem_of_list_singleton elem_of_replicate. naive_solver.
  Qed.
306
  Lemma list_lookup_singletonM i x : {[ i := x ]} !! i = Some x.
307
  Proof. induction i; by f_equal/=. Qed.
308
309
  Lemma list_lookup_singletonM_ne i j x :
    i  j  {[ i := x ]} !! j = None  {[ i := x ]} !! j = Some .
310
  Proof. revert j; induction i; intros [|j]; naive_solver auto with omega. Qed.
311
  Lemma list_singletonM_validN n i x : {n} {[ i := x ]}  {n} x.
312
313
  Proof.
    rewrite list_lookup_validN. split.
314
    { move=> /(_ i). by rewrite list_lookup_singletonM. }
315
    intros Hx j; destruct (decide (i = j)); subst.
316
317
    - by rewrite list_lookup_singletonM.
    - destruct (list_lookup_singletonM_ne i j x) as [Hi|Hi]; first done;
318
319
        rewrite Hi; by try apply (ucmra_unit_validN (A:=A)).
  Qed.
320
321
322
323
324
  Lemma list_singleton_valid  i x :  {[ i := x ]}   x.
  Proof.
    rewrite !cmra_valid_validN. by setoid_rewrite list_singletonM_validN.
  Qed.
  Lemma list_singletonM_length i x : length {[ i := x ]} = S i.
325
  Proof.
326
    rewrite /singletonM /list_singletonM app_length replicate_length /=; lia.
327
328
  Qed.

329
  Lemma list_core_singletonM i (x : A) : core {[ i := x ]}  {[ i := core x ]}.
330
  Proof.
331
    rewrite /singletonM /list_singletonM.
Robbert Krebbers's avatar
Robbert Krebbers committed
332
    by rewrite {1}/core /= fmap_app fmap_replicate (persistent_core ).
333
  Qed.
334
335
336
337
338
339
340
341
342
343
344
345
346
  Lemma list_op_singletonM i (x y : A) :
    {[ i := x ]}  {[ i := y ]}  {[ i := x  y ]}.
  Proof.
    rewrite /singletonM /list_singletonM /=.
    induction i; constructor; rewrite ?left_id; auto.
  Qed.
  Lemma list_alter_singletonM f i x : alter f i {[i := x]} = {[i := f x]}.
  Proof.
    rewrite /singletonM /list_singletonM /=. induction i; f_equal/=; auto.
  Qed.
  Global Instance list_singleton_persistent i (x : A) :
    Persistent x  Persistent {[ i := x ]}.
  Proof. by rewrite !persistent_total list_core_singletonM=> ->. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348

  (* Update *)
349
350
  Lemma list_singleton_updateP (P : A  Prop) (Q : list A  Prop) x :
    x ~~>: P  ( y, P y  Q [y])  [x] ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
  Proof.
352
353
354
355
    rewrite !cmra_total_updateP=> Hup HQ n lf /list_lookup_validN Hv.
    destruct (Hup n (from_option id  (lf !! 0))) as (y&?&Hv').
    { move: (Hv 0). by destruct lf; rewrite /= ?right_id. }
    exists [y]; split; first by auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
    apply list_lookup_validN=> i.
357
358
359
360
361
362
363
364
    move: (Hv i) Hv'. by destruct i, lf; rewrite /= ?right_id.
  Qed.
  Lemma list_singleton_updateP' (P : A  Prop) x :
    x ~~>: P  [x] ~~>: λ k,  y, k = [y]  P y.
  Proof. eauto using list_singleton_updateP. Qed.
  Lemma list_singleton_update x y : x ~~> y  [x] ~~> [y].
  Proof.
    rewrite !cmra_update_updateP; eauto using list_singleton_updateP with subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
366
  Qed.

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  Lemma app_updateP (P1 P2 Q : list A  Prop) l1 l2 :
    l1 ~~>: P1  l2 ~~>: P2 
    ( k1 k2, P1 k1  P2 k2  length l1 = length k1  Q (k1 ++ k2)) 
    l1 ++ l2 ~~>: Q.
  Proof.
    rewrite !cmra_total_updateP=> Hup1 Hup2 HQ n lf.
    rewrite list_op_app app_validN=> -[??].
    destruct (Hup1 n (take (length l1) lf)) as (k1&?&?); auto.
    destruct (Hup2 n (drop (length l1) lf)) as (k2&?&?); auto.
    exists (k1 ++ k2). rewrite list_op_app app_validN.
    by destruct (HQ k1 k2) as [<- ?].
  Qed.
  Lemma app_update l1 l2 k1 k2 :
    length l1 = length k1 
    l1 ~~> k1  l2 ~~> k2  l1 ++ l2 ~~> k1 ++ k2.
  Proof. rewrite !cmra_update_updateP; eauto using app_updateP with subst. Qed.

  Lemma cons_updateP (P1 : A  Prop) (P2 Q : list A  Prop) x l :
    x ~~>: P1  l ~~>: P2  ( y k, P1 y  P2 k  Q (y :: k))  x :: l ~~>: Q.
  Proof.
    intros. eapply (app_updateP _ _ _ [x]);
      naive_solver eauto using list_singleton_updateP'.
  Qed.
  Lemma cons_updateP' (P1 : A  Prop) (P2 : list A  Prop) x l :
    x ~~>: P1  l ~~>: P2  x :: l ~~>: λ k,  y k', k = y :: k'  P1 y  P2 k'.
  Proof. eauto 10 using cons_updateP. Qed.
  Lemma cons_update x y l k : x ~~> y  l ~~> k  x :: l ~~> y :: k.
  Proof. rewrite !cmra_update_updateP; eauto using cons_updateP with subst. Qed.

  Lemma list_middle_updateP (P : A  Prop) (Q : list A  Prop) l1 x l2 :
    x ~~>: P  ( y, P y  Q (l1 ++ y :: l2))  l1 ++ x :: l2 ~~>: Q.
  Proof.
    intros. eapply app_updateP.
    - by apply cmra_update_updateP.
    - by eapply cons_updateP', cmra_update_updateP.
    - naive_solver.
  Qed.
404
  Lemma list_middle_update l1 l2 x y : x ~~> y  l1 ++ x :: l2 ~~> l1 ++ y :: l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
405
  Proof.
406
    rewrite !cmra_update_updateP=> ?; eauto using list_middle_updateP with subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
408
  Qed.

409
(* FIXME
410
411
412
  Lemma list_middle_local_update l1 l2 x y ml :
    x ~l~> y @ ml ≫= (!! length l1) →
    l1 ++ x :: l2 ~l~> l1 ++ y :: l2 @ ml.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
  Proof.
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    intros [Hxy Hxy']; split.
    - intros n; rewrite !list_lookup_validN=> Hl i; move: (Hl i).
      destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
      + by rewrite !list_lookup_opM !lookup_app_l.
      + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM; apply (Hxy n).
      + rewrite !(cons_middle _ l1 l2) !assoc.
        rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
    - intros n mk; rewrite !list_lookup_validN !list_dist_lookup => Hl Hl' i.
      move: (Hl i) (Hl' i).
      destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
      + by rewrite !list_lookup_opM !lookup_app_l.
      + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM !inj_iff.
        apply (Hxy' n).
      + rewrite !(cons_middle _ l1 l2) !assoc.
        rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
  Qed.
430
  Lemma list_singleton_local_update i x y ml :
431
    x ~l~> y @ ml ≫= (!! i) → {[ i := x ]} ~l~> {[ i := y ]} @ ml.
432
  Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed.
433
*)
Robbert Krebbers's avatar
Robbert Krebbers committed
434
435
436
End properties.

(** Functor *)
437
Instance list_fmap_cmra_monotone {A B : ucmraT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
440
441
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : list A  list B).
Proof.
  split; try apply _.
  - intros n l. rewrite !list_lookup_validN=> Hl i. rewrite list_lookup_fmap.
442
    by apply (cmra_monotone_validN (fmap f : option A  option B)).
Robbert Krebbers's avatar
Robbert Krebbers committed
443
  - intros l1 l2. rewrite !list_lookup_included=> Hl i. rewrite !list_lookup_fmap.
444
    by apply (cmra_monotone (fmap f : option A  option B)).
Robbert Krebbers's avatar
Robbert Krebbers committed
445
446
Qed.

447
448
449
Program Definition listURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := listUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := listC_map (urFunctor_map F fg)
Robbert Krebbers's avatar
Robbert Krebbers committed
450
451
|}.
Next Obligation.
452
  by intros F ???? n f g Hfg; apply listC_map_ne, urFunctor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
454
455
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(list_fmap_id x).
456
  apply list_fmap_equiv_ext=>y. apply urFunctor_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
458
459
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose.
460
  apply list_fmap_equiv_ext=>y; apply urFunctor_compose.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
462
Qed.

463
464
Instance listURF_contractive F :
  urFunctorContractive F  urFunctorContractive (listURF F).
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Proof.
466
  by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, urFunctor_contractive.
Robbert Krebbers's avatar
Robbert Krebbers committed
467
Qed.