sts.v 13 KB
Newer Older
1
From prelude Require Export sets.
2 3
From algebra Require Export cmra.
From algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Local Arguments unit _ _ !_ /.

8
Module sts.
Ralf Jung's avatar
Ralf Jung committed
9

Robbert Krebbers's avatar
Robbert Krebbers committed
10
Record stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12 13 14 15 16 17 18
  state : Type;
  token : Type;
  trans : relation state;
  tok   : state  set token;
}.

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
19
Inductive bound (sts : stsT) :=
Ralf Jung's avatar
Ralf Jung committed
20 21 22 23 24
  | bound_auth : state sts  set (token sts)  bound sts
  | bound_frag : set (state sts)  set (token sts ) bound sts.
Arguments bound_auth {_} _ _.
Arguments bound_frag {_} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
25
Section sts_core.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Context (sts : stsT).
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Infix "≼" := dra_included.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

Ralf Jung's avatar
Ralf Jung committed
29 30 31 32 33 34 35 36 37 38 39
Notation state := (state sts).
Notation token := (token sts).
Notation trans := (trans sts).
Notation tok := (tok sts).

Inductive equiv : Equiv (bound sts) :=
  | auth_equiv s T1 T2 : T1  T2  bound_auth s T1  bound_auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2 
                             bound_frag S1 T1  bound_frag S2 T2.
Global Existing Instance equiv.
Inductive step : relation (state * set token) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  | Step s1 s2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
41 42
     trans s1 s2  tok s1  T1    tok s2  T2   
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Hint Resolve Step.
Ralf Jung's avatar
Ralf Jung committed
44
Inductive frame_step (T : set token) (s1 s2 : state) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
45
  | Frame_step T1 T2 :
46
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
47
Hint Resolve Frame_step.
Ralf Jung's avatar
Ralf Jung committed
48
Record closed (S : set state) (T : set token) : Prop := Closed {
49
  closed_ne : S  ;
50
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
51 52 53
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Lemma closed_steps S T s1 s2 :
54
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
55
Proof. induction 3; eauto using closed_step. Qed.
Ralf Jung's avatar
Ralf Jung committed
56
Global Instance valid : Valid (bound sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
57
  match x with
Ralf Jung's avatar
Ralf Jung committed
58
  | bound_auth s T => tok s  T   | bound_frag S' T => closed S' T
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  end.
Ralf Jung's avatar
Ralf Jung committed
60 61
Definition up (s : state) (T : set token) : set state :=
  mkSet (rtc (frame_step T) s).
Robbert Krebbers's avatar
Robbert Krebbers committed
62 63
Definition up_set (S : set state) (T : set token) : set state :=
  S = λ s, up s T.
Ralf Jung's avatar
Ralf Jung committed
64 65 66 67 68 69
Global Instance unit : Unit (bound sts) := λ x,
  match x with
  | bound_frag S' _ => bound_frag (up_set S'  ) 
  | bound_auth s _  => bound_frag (up s ) 
  end.
Inductive disjoint : Disjoint (bound sts) :=
70
  | frag_frag_disjoint S1 S2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
71 72 73 74 75 76 77
     S1  S2    T1  T2    bound_frag S1 T1  bound_frag S2 T2
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2   
                                   bound_auth s T1  bound_frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2   
                                   bound_frag S T1  bound_auth s T2.
Global Existing Instance disjoint.
Global Instance op : Op (bound sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
78
  match x1, x2 with
Ralf Jung's avatar
Ralf Jung committed
79 80 81 82 83
  | bound_frag S1 T1, bound_frag S2 T2 => bound_frag (S1  S2) (T1  T2)
  | bound_auth s T1, bound_frag _ T2 => bound_auth s (T1  T2)
  | bound_frag _ T1, bound_auth s T2 => bound_auth s (T1  T2)
  | bound_auth s T1, bound_auth _ T2 =>
    bound_auth s (T1  T2)(* never happens *)
Robbert Krebbers's avatar
Robbert Krebbers committed
84
  end.
Ralf Jung's avatar
Ralf Jung committed
85
Global Instance minus : Minus (bound sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  match x1, x2 with
Ralf Jung's avatar
Ralf Jung committed
87 88 89 90 91 92
  | bound_frag S1 T1, bound_frag S2 T2 => bound_frag
                                            (up_set S1 (T1  T2)) (T1  T2)
  | bound_auth s T1, bound_frag _ T2 => bound_auth s (T1  T2)
  | bound_frag _ T2, bound_auth s T1 =>
    bound_auth s (T1  T2) (* never happens *)
  | bound_auth s T1, bound_auth _ T2 => bound_frag (up s (T1  T2)) (T1  T2)
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94
  end.

Ralf Jung's avatar
Ralf Jung committed
95 96
Hint Extern 10 (base.equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬(base.equiv (A:=set _) _ _)) => solve_elem_of : sts.
97 98
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Ralf Jung's avatar
Ralf Jung committed
99
Instance: Equivalence (() : relation (bound sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102 103 104 105
Proof.
  split.
  * by intros []; constructor.
  * by destruct 1; constructor.
  * destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
Qed.
106 107 108
Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> impl) frame_step.
Proof. intros ?? HT ?? <- ?? <-; destruct 1; econstructor; eauto with sts. Qed.
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Proof.
110
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
111
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
Qed.
113 114
Instance closed_proper : Proper (() ==> () ==> iff) closed.
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
Lemma closed_op T1 T2 S1 S2 :
116 117
  closed S1 T1  closed S2 T2 
  T1  T2    S1  S2    closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Proof.
119
  intros [_ ? Hstep1] [_ ? Hstep2] ?; split; [done|solve_elem_of|].
120 121 122
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
  * apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  * apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Qed.
124
Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Proof.
126
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
  eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Qed.
130 131
Instance up_proper : Proper ((=) ==> () ==> ()) up.
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Ralf Jung's avatar
Ralf Jung committed
132 133 134 135 136
Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Qed.
137
Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
139
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Proof. constructor. Qed.
141
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
143 144
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
145
Lemma closed_up_set S T :
146
  ( s, s  S  tok s  T  )  S    closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
147
Proof.
148
  intros HS Hne; unfold up_set; split.
149
  * assert ( s, s  up s T) by eauto using elem_of_up. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
  * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
151
    specialize (HS s' Hs'); clear Hs' Hne S.
Robbert Krebbers's avatar
Robbert Krebbers committed
152 153 154 155 156
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; auto.
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
  * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s.
    split; [eapply rtc_r|]; eauto.
Qed.
157
Lemma closed_up_set_empty S : S    closed (up_set S ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
158
Proof. eauto using closed_up_set with sts. Qed.
159
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
Proof.
161
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
162
  apply closed_up_set; solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
Qed.
164
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Proof. eauto using closed_up with sts. Qed.
166
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Proof.
168
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170 171
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Ralf Jung's avatar
Ralf Jung committed
172
Global Instance dra : DRA (bound sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
173 174 175 176 177 178 179 180
Proof.
  split.
  * apply _.
  * by do 2 destruct 1; constructor; setoid_subst.
  * by destruct 1; constructor; setoid_subst.
  * by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
  * by do 2 destruct 1; constructor; setoid_subst.
  * assert ( T T' S s,
181
      closed S T  s  S  tok s  T'    tok s  (T  T')  ).
182
    { intros S T T' s [??]; solve_elem_of. }
Robbert Krebbers's avatar
Robbert Krebbers committed
183
    destruct 3; simpl in *; auto using closed_op with sts.
184
  * intros []; simpl; eauto using closed_up, closed_up_set, closed_ne with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
185 186
  * intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
      rewrite ?disjoint_union_difference; auto using closed_up with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
    eapply closed_up_set; eauto 2 using closed_disjoint with sts.
188
  * intros [] [] []; constructor; rewrite ?assoc; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
189 190 191 192
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 1; constructor; auto with sts.
  * destruct 3; constructor; auto with sts.
193
  * intros [|S T]; constructor; auto using elem_of_up with sts.
194
    assert (S  up_set S   S  ) by eauto using subseteq_up_set, closed_ne.
195
    solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  * intros [|S T]; constructor; auto with sts.
197
    assert (S  up_set S ); auto using subseteq_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
  * intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
    + rewrite (up_closed (up_set _ _));
        eauto using closed_up_set, closed_ne with sts.
202
  * intros x y ?? (z&Hy&?&Hxz); exists (unit (x  y)); split_ands.
203
    + destruct Hxz;inversion_clear Hy;constructor;unfold up_set; solve_elem_of.
204 205 206 207
    + destruct Hxz; inversion_clear Hy; simpl;
        auto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxz; inversion_clear Hy; constructor;
        repeat match goal with
208 209 210 211
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
212 213 214
        end; auto with sts.
  * intros x y ?? (z&Hy&_&Hxz); destruct Hxz; inversion_clear Hy; constructor;
      repeat match goal with
215 216 217 218
      | |- context [ up_set ?S ?T ] =>
         unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
      | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
219
      end; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
220 221
  * intros x y ?? (z&Hy&?&Hxz); destruct Hxz as [S1 S2 T1 T2| |];
      inversion Hy; clear Hy; constructor; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
222
      rewrite ?disjoint_union_difference; auto.
223
    split; [|apply intersection_greatest; auto using subseteq_up_set with sts].
Robbert Krebbers's avatar
Robbert Krebbers committed
224 225 226 227
    apply intersection_greatest; [auto with sts|].
    intros s2; rewrite elem_of_intersection.
    unfold up_set; rewrite elem_of_bind; intros (?&s1&?&?&?).
    apply closed_steps with T2 s1; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
228 229
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
230
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
231
  s2  S  T2  Tf    tok s2  T2  .
Robbert Krebbers's avatar
Robbert Krebbers committed
232
Proof.
233
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [?? Hstep]??; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  * eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
235
  * solve_elem_of -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
236 237 238
Qed.
End sts_core.

239
Section stsRA.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
Context (sts : stsT).
Robbert Krebbers's avatar
Robbert Krebbers committed
241

Ralf Jung's avatar
Ralf Jung committed
242 243 244 245 246
Canonical Structure RA := validityRA (bound sts).
Definition auth (s : state sts) (T : set (token sts)) : RA :=
  to_validity (bound_auth s T).
Definition frag (S : set (state sts)) (T : set (token sts)) : RA :=
  to_validity (bound_frag S T).
Ralf Jung's avatar
Ralf Jung committed
247

Ralf Jung's avatar
Ralf Jung committed
248 249
Lemma update_auth s1 s2 T1 T2 :
  step sts (s1,T1) (s2,T2)  auth s1 T1 ~~> auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
251
  intros ?; apply validity_update; inversion 3 as [|? S ? Tf|]; subst.
Ralf Jung's avatar
Ralf Jung committed
252
  destruct (step_closed sts s1 s2 T1 T2 S Tf) as (?&?&?); auto.
253
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
254
Qed.
Ralf Jung's avatar
Ralf Jung committed
255

Ralf Jung's avatar
Ralf Jung committed
256 257 258
Lemma sts_update_frag S1 S2 (T : set (token sts)) :
  S1  S2  closed sts S2 T 
  frag S1 T ~~> frag S2 T.
259 260 261 262 263 264
Proof.
  move=>HS Hcl. eapply validity_update; inversion 3 as [|? S ? Tf|]; subst.
  - split; first done. constructor; last done. solve_elem_of.
  - split; first done. constructor; solve_elem_of.
Qed.

Ralf Jung's avatar
Ralf Jung committed
265 266 267 268 269
Lemma frag_included S1 S2 T1 T2 :
  closed sts S2 T2 
  frag S1 T1  frag S2 T2  
  (closed sts S1 T1   Tf, T2  T1  Tf  T1  Tf   
                            S2  (S1  up_set sts S2 Tf)).
Ralf Jung's avatar
Ralf Jung committed
270
Proof.
271 272
  move=>Hcl2. split.
  - intros [xf EQ]. destruct xf as [xf vf Hvf]. destruct xf as [Sf Tf|Sf Tf].
273
    { exfalso. inversion_clear EQ as [Hv EQ']. apply EQ' in Hcl2. simpl in Hcl2.
274
      inversion Hcl2. }
275 276 277
    inversion_clear EQ as [Hv EQ'].
    move:(EQ' Hcl2)=>{EQ'} EQ. inversion_clear EQ as [|? ? ? ? HT HS].
    destruct Hv as [Hv _]. move:(Hv Hcl2)=>{Hv} [/= Hcl1  [Hclf Hdisj]].
278 279 280
    apply Hvf in Hclf. simpl in Hclf. clear Hvf.
    inversion_clear Hdisj. split; last (exists Tf; split_ands); [done..|].
    apply (anti_symm ()).
281
    + move=>s HS2. apply elem_of_intersection. split; first by apply HS.
282
      by apply sts.subseteq_up_set.
283
    + move=>s /elem_of_intersection [HS1 Hscl]. apply HS. split; first done.
284 285
      destruct Hscl as [s' [Hsup Hs']].
      eapply sts.closed_steps; last (hnf in Hsup; eexact Hsup); first done.
286
      solve_elem_of +HS Hs'.
Ralf Jung's avatar
Ralf Jung committed
287 288
  - intros (Hcl1 & Tf & Htk & Hf & Hs).
    exists (frag (up_set sts S2 Tf) Tf).
289 290 291
    split; first split; simpl;[|done|].
    + intros _. split_ands; first done.
      * apply sts.closed_up_set; last by eapply sts.closed_ne.
Ralf Jung's avatar
Ralf Jung committed
292
        move=>s Hs2. move:(closed_disjoint sts _ _ Hcl2 _ Hs2).
Ralf Jung's avatar
Ralf Jung committed
293
        solve_elem_of +Htk.
294 295 296 297
      * constructor; last done. rewrite -Hs. by eapply sts.closed_ne.
    + intros _. constructor; [ solve_elem_of +Htk | done].
Qed.

Ralf Jung's avatar
Ralf Jung committed
298 299
Lemma frag_included' S1 S2 T :
  closed sts S2 T  closed sts S1 T 
Robbert Krebbers's avatar
Robbert Krebbers committed
300
  S2  S1  sts.up_set sts S2  
Ralf Jung's avatar
Ralf Jung committed
301
  frag S1 T  frag S2 T.
302
Proof.
Ralf Jung's avatar
Ralf Jung committed
303
  intros. apply frag_included; first done.
304 305
  split; first done. exists . split_ands; done || solve_elem_of+.
Qed.
Ralf Jung's avatar
Ralf Jung committed
306

307
End stsRA.
Ralf Jung's avatar
Ralf Jung committed
308 309

End sts.