derived.tex 23.3 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
\section{Derived Program logic}\label{sec:proglog}

Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive view shifts, respectively:
\[
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \dynA{\expr}{\lambda\Ret\val.\propB}{\mask})}
\qquad\qquad
\begin{aligned}
\prop \vs[\mask_1][\mask_2] \propB &\eqdef \always{(\prop \Ra \pvsA{\propB}{\mask_1}{\mask_2})} \\
\prop \vsE[\mask_1][\mask_2] \propB &\eqdef \prop \vs[\mask_1][\mask_2] \propB \land \propB \vs[\mask2][\mask_1] \prop
\end{aligned}
\]
We write just one mask for a view shift when $\mask_1 = \mask_2$.
The convention for omitted masks is generous:
An omitted $\mask$ is $\top$ for Hoare triples and $\emptyset$ for view shifts.

% PDS: We're repeating ourselves. We gave Γ conventions and we're about to give Θ conventions. Also, the scope of "Below" is unclear.
% Below, we implicitly assume the same context for all judgements which don't have an explicit context at \emph{all} pre-conditions \emph{and} the conclusion.

Henceforward, we implicitly assume a proof context, $\pfctx$, is added to every constituent of the rules.
Generally, this is an arbitrary proof context.
We write $\provesalways$ to denote judgments that can only be extended with a boxed proof context.

\ralf{Give the actual base rules from the Coq development instead}

\subsection{Hoare triples}
\begin{mathpar}
\inferH{Ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Bind}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{K[\val]}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{K[\expr]}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferH{Frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask \uplus \mask']}
\and
\inferH{AFrame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \text{$\expr$ not a value}
  }
  {\hoare{\prop * \later\propC}{\expr}{\Ret\val. \propB * \propC}[\mask \uplus \mask']}
% \and
% \inferH{Fork}
%   {\hoare{\prop}{\expr}{\Ret\any. \TRUE}[\top]}
%   {\hoare{\later\prop * \later\propB}{\fork{\expr}}{\Ret\val. \val = \textsf{fRet} \land \propB}[\mask]}
\and
\inferH{ACsq}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \physatomic{\expr}
  }
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
\end{mathpar}

\subsection{View shifts}

\begin{mathpar}
\inferH{NewInv}
  {\infinite(\mask)}
  {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
\and
\inferH{FpUpd}
  {\melt \mupd \meltsB}
  {\ownGGhost{\melt} \vs \exists \meltB \in \meltsB.\; \ownGGhost{\meltB}}
\and
\inferH{VSTrans}
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC \and \mask_2 \subseteq \mask_1 \cup \mask_3}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
\inferH{VSImp}
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
\inferH{VSFrame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB * \propC}
\and
\inferH{VSTimeless}
  {\timeless{\prop}}
  {\later \prop \vs \prop}
\and
\axiomH{InvOpen}
  {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
\and
\axiomH{InvClose}
  {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }
\end{mathpar}

\vspace{5pt}
Note that $\timeless{\prop}$ means that $\prop$ does not depend on the step index.
Furthermore, $$\melt \mupd \meltsB \eqdef \always{\All \melt_f. \melt \sep \melt_f \Ra \Exists \meltB \in \meltsB. \meltB \sep \melt_f}$$

\subsection{Derived rules}

\paragraph{Derived structural rules.}
The following are easily derived by unfolding the sugar for Hoare triples and view shifts.
\begin{mathpar}
\inferHB{Disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{VSDisj}
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
\inferHB{Exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{VSExist}
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
\inferHB{BoxOut}
  {\always\propB \provesalways \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{VSBoxOut}
  {\always\propB \provesalways \prop \vs[\mask_1][\mask_2] \propC}
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
\inferH{False}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
\and
\inferH{VSFalse}
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
\end{mathpar}
The proofs all follow the same pattern, so we only show two of them in detail.
\begin{proof}[Proof of \ruleref{Exist}]
	After unfolding the syntactic sugar for Hoare triples and removing the boxes from premise and conclusion, our goal becomes
	\[
		(\Exists \var. \prop(\var)) \Ra \dynA{\expr}{\Lam\val. \propB}{\mask}
	\]
	(remember that $\var$ is free in $\prop$) and the premise reads
	\[
		\All \var. \prop(\var) \Ra \dynA{\expr}{\Lam\val. \propB}{\mask}.
	\]
	Let $\var$ be given and assume $\prop(\var)$.
	To show $\dynA{\expr}{\Lam\val. \propB}{\mask}$, apply the premise to $\var$ and $\prop(\var)$.
 
	For the other direction, assume
	\[
		\hoare{\Exists \var. \prop(\var)}{\expr}{\Ret\val. \propB}[\mask]
	\]
	and let $\var$ be given.
	We have to show $\hoare{\prop(\var)}{\expr}{\Ret\val. \propB}[\mask]$.
	This trivially follows from \ruleref{Csq} with $\prop(\var) \Ra \Exists \var. \prop(\var)$.
\end{proof}

\begin{proof}[Proof of \ruleref{BoxOut}]
  After unfolding the syntactic sugar for Hoare triples, our goal becomes
  \begin{equation}\label{eq:boxin:goal}
    \always\pfctx \proves \always\bigl(\prop\land\always \propB \Ra \dynA{\expr}{\Lam\val. \propC}{\mask}\bigr)
  \end{equation}
  while our premise reads
  \begin{equation}\label{eq:boxin:as}
    \always\pfctx, \always\propB \proves \always(\prop \Ra \dynA{\expr}{\Lam\val. \propC}{\mask})
  \end{equation}
  By the introduction rules for $\always$ and implication, it suffices to show
  \[  (\always\pfctx), \prop,\always \propB \proves \dynA{\expr}{\Lam\val. \propC}{\mask} \]
  By modus ponens and \ruleref{Necessity}, it suffices to show~\eqref{eq:boxin:as}, which is exactly our assumption.
  
  For the other direction, assume~\eqref{eq:boxin:goal}. We have to show~\eqref{eq:boxin:as}. By \ruleref{AlwaysIntro} and implication introduction, it suffices to show
  \[  (\always\pfctx), \prop,\always \propB \proves \dynA{\expr}{\Lam\val. \propC}{\mask} \]
  which easily follows from~\eqref{eq:boxin:goal}.
\end{proof}

\paragraph{Derived rules for invariants.}
Invariants can be opened around atomic expressions and view shifts.

\begin{mathpar}
\inferH{Inv}
  {\hoare{\later{\propC} * \prop }
          {\expr}
          {\Ret\val. \later{\propC} * \propB }[\mask]
          \and \physatomic{\expr}
  }
  {\knowInv{\iname}{\propC} \proves \hoare{\prop}
          {\expr}
          {\Ret\val. \propB}[\mask \uplus \{ \iname \}]
  }
\and
\inferH{VSInv}
  {\later{\prop} * \propB \vs[\mask_1][\mask_2] \later{\prop} * \propC}
  {\knowInv{\iname}{\prop} \proves \propB \vs[\mask_1 \uplus \{ \iname \}][\mask_2 \uplus \{ \iname \}] \propC}
\end{mathpar}

\begin{proof}[Proof of \ruleref{Inv}]
  Use \ruleref{ACsq} with $\mask_1 \eqdef \mask \cup \{\iname\}$, $\mask_2 \eqdef \mask$.
  The view shifts are obtained by \ruleref{InvOpen} and \ruleref{InvClose} with framing of $\mask$ and $\prop$ or $\propB$, respectively.
\end{proof}

\begin{proof}[Proof of \ruleref{VSInv}]
Analogous to the proof of \ruleref{Inv}, using \ruleref{VSTrans} instead of \ruleref{ACsq}.
\end{proof}

\subsubsection{Unsound rules}

Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
\begin{mathpar}
	\infer
	{P \vs Q}
	{\later P \vs \later Q}
	\and
	\infer
	{\later(P \vs Q)}
	{\later P \vs \later Q}
\end{mathpar}

Of course, the second rule implies the first, so let's focus on that.
Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.

\subsection{Adequacy}

The adequacy statement reads as follows:
\begin{align*}
 &\All \mask, \expr, \val, \pred, i, \state, \state', \tpool'.
 \\&( \proves \hoare{\ownPhys\state}{\expr}{x.\; \pred(x)}[\mask]) \implies
 \\&\cfg{\state}{[i \mapsto \expr]} \step^\ast
     \cfg{\state'}{[i \mapsto \val] \uplus \tpool'} \implies
     \\&\pred(\val)
\end{align*}
where $\pred$ can mention neither resources nor invariants.

\subsection{Axiom lifting}\label{sec:lifting}

The following lemmas help in proving axioms for a particular language.
The first applies to expressions with side-effects, and the second to side-effect-free expressions.
\dave{Update the others, and the example, wrt the new treatment of $\predB$.}
\begin{align*}
 &\All \expr, \state, \pred, \prop, \propB, \mask. \\
 &\textlog{reducible}(e) \implies \\
 &(\All \expr', \state'. \cfg{\state}{\expr} \step \cfg{\state'}{\expr'} \implies \pred(\expr', \state')) \implies \\
 &{} \proves \bigl( (\All \expr', \state'. \pred (\expr', \state') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{ \later \prop * \ownPhys{\state} }{\expr}{\Ret\val. \propB}[\mask] \bigr) \\
 \quad\\
 &\All \expr, \pred, \prop, \propB, \mask. \\
 &\textlog{reducible}(e) \implies \\
 &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \pred(\expr_2)) \implies \\
 &{} \proves \bigl( (\All \expr'. \pred(\expr') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] \bigr)
\end{align*}
Note that $\pred$ is a meta-logic predicate---it does not depend on any world or resources being owned.

The following specializations cover all cases of a heap-manipulating lambda calculus like $F_{\mu!}$.
\begin{align*}
 &\All \expr, \expr', \prop, \propB, \mask. \\
 &\textlog{reducible}(e) \implies \\
 &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \expr_2 = \expr') \implies \\
 &{} \proves (\hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask] \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] ) \\
 \quad \\
 &\All \expr, \state, \pred, \mask. \\
 &\textlog{atomic}(e) \implies \\
 &\bigl(\All \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \pred(\expr_2, \state_2)\bigr) \implies \\
 &{} \proves (\hoare{ \ownPhys{\state} }{\expr}{\Ret\val. \Exists\state'. \ownPhys{\state'} \land \pred(\val, \state') }[\mask] )
\end{align*}
The first is restricted to deterministic pure reductions, like $\beta$-reduction.
The second is suited to proving triples for (possibly non-deterministic) atomic expressions; for example, with $\expr \eqdef \;!\ell$ (dereferencing $\ell$) and $\state \eqdef h \mtimes \ell \mapsto \valB$ and $\pred(\val, \state') \eqdef \state' = (h \mtimes \ell \mapsto \valB) \land \val = \valB$, one obtains the axiom $\All h, \ell, \valB. \hoare{\ownPhys{h \mtimes \ell \mapsto \valB}}{!\ell}{\Ret\val. \val = \valB \land \ownPhys{h \mtimes \ell \mapsto \valB} }$.
%Axioms for CAS-like operations can be obtained by first deriving rules for the two possible cases, and then using the disjunction rule.


275 276 277 278 279 280 281
\section{Derived constructions}

In this section we describe some constructions that we will use throughout the rest of the appendix.

\subsection{Global monoid}

Hereinafter we assume the global monoid (served up as a parameter to Iris) is obtained from a family of monoids $(M_i)_{i \in I}$ by first applying the construction for finite partial functions to each~(\Sref{sec:fpfunm}), and then applying the product construction~(\Sref{sec:prodm}):
Ralf Jung's avatar
Ralf Jung committed
282
\[ M \eqdef \prod_{i \in I} \textdom{GhName} \fpfn M_i \]
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
We don't care so much about what concretely $\textdom{GhName}$ is, as long as it is countable and infinite.
We write $\ownGhost{\gname}{\melt : M_i}$ (or just $\ownGhost{\gname}{\melt}$ if $M_i$ is clear from the context) for $\ownGGhost{[i \mapsto [\gname \mapsto \melt]]}$ when $\melt \in \mcarp {M_i}$, and for $\FALSE$ when $\melt = \mzero_{M_i}$.
In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current state of monoid $M_i$, the name $\gname$ is allocated and has at least value $\melt$.

From~\ruleref{FpUpd} and the multiplications and frame-preserving updates in~\Sref{sec:prodm} and~\Sref{sec:fpfunm}, we have the following derived rules.
\begin{mathpar}
	\axiomH{NewGhost}{
		\TRUE \vs \Exists\gname. \ownGhost\gname{\melt : M_i}
	}
	\and
	\inferH{GhostUpd}
    {\melt \mupd_{M_i} B}
    {\ownGhost\gname{\melt : M_i} \vs \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}}
  \and
  \axiomH{GhostEq}
    {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \Lra \ownGhost\gname{\melt\mtimes\meltB : M_i}}

  \axiomH{GhostUnit}
    {\TRUE \Ra \ownGhost{\gname}{\munit : M_i}}

  \axiomH{GhostZero}
    {\ownGhost\gname{\mzero : M_i} \Ra \FALSE}

  \axiomH{GhostTimeless}
    {\timeless{\ownGhost\gname{\melt : M_i}}}
\end{mathpar}

\subsection{STSs with interpretation}\label{sec:stsinterp}

Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.

An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation:
\begin{align*}
  \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\
  \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)}
\end{align*}

We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants:
\begin{mathpar}
 \inferH{NewSts}
  {\infinite(\mask)}
  {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname.   \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}}
 \and
 \axiomH{StsOpen}
  {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}}
 \and
 \axiomH{StsClose}
  {  \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T')  \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} }
\end{mathpar}
\begin{proof}
\ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}.

\ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$.

\ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}.
\end{proof}

Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}):
\begin{mathpar}
 \inferH{Sts}
  {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask]
   \and \physatomic{\expr}}
  {  \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]}
 \and
 \inferH{VSSts}
  {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q}
  {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}
\end{mathpar}

\begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts}
 We have to show
 \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\]
 where $\val$, $s'$, $T'$ are free in $Q$.
 
 First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show
 \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\]

 Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$.
 It remains to show:
 \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\]
 
 Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$:
 \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\]
 
 This holds by our premise.
\end{proof}

Ralf Jung's avatar
Ralf Jung committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
% \begin{proof}[Proof of \ruleref{VSSts}]
% This is similar to above, so we only give the proof in short notation:

% \hproof{%
% 	Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\
% 	\pline[\mask_1 \uplus \{\iname\}]{
% 		\ownGhost\gname{(s_0, T)} * P
% 	} \\
% 	\pline[\mask_1]{%
% 		\Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P
% 	} \qquad by \ruleref{StsOpen} \\
% 	Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\
% 	\pline[\mask_2]{%
% 		 \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)}
% 	} \qquad by premiss \\
% 	Context: $(s, T) \ststrans (s', T')$ \\
% 	\pline[\mask_2 \uplus \{\iname\}]{
% 		\ownGhost\gname{(s', T')} * Q(s', T')
% 	} \qquad by \ruleref{StsClose}
% }
% \end{proof}
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

\subsection{Authoritative monoids with interpretation}\label{sec:authinterp}

Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}.

Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$.
Now define
\begin{align*}
  \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\
  \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)}
\end{align*}

The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts:
\begin{mathpar}
 \inferH{NewAuth}
  {\infinite(\mask) \and M~\textlog{cancellative}}
  {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
 \and
 \axiomH{AuthOpen}
  {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_f.\; \later\pred_\bot(\melt \mtimes \melt_f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_f, \authfrag a:\auth{M}}}
 \and
 \axiomH{AuthClose}
  {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_f) * \ownGhost{\gname}{\authfull a \mtimes \melt_f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
\end{mathpar}

These view shifts in turn can be used to prove variants of the invariant rules:
\begin{mathpar}
 \inferH{Auth}
  {\forall \melt_f.\; \hoare{\later\pred_\bot(a \mtimes \melt_f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_f) * Q}[\mask]
   \and \physatomic{\expr}}
  {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
 \and
 \inferH{VSAuth}
  {\forall \melt_f.\; \later\pred_\bot(a \mtimes \melt_f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_f) * Q(\meltB)}
  {\Auth(M, \pred, \gname, \iname) \vdash
   \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
   \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
\end{mathpar}


\subsection{Ghost heap}
\label{sec:ghostheap}%

We define a simple ghost heap with fractional permissions.
Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter).
In such cases we use these ghost heaps.

We seek to implement the following interface:
\newcommand{\GRefspecmaps}{\textsf{GMapsTo}}%
\begin{align*}
 \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\
  & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\
  &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\
  & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\
  & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w
\end{align*}
We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$.
Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$.

To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\textdom{Val})$ and define
\[
	x \fgmapsto[q] v \eqdef
	  \begin{cases}
    	\ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\
    	\FALSE & \text{otherwise}
    \end{cases}
\]
The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}.
The first implication is immediate from the definition.
The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$.

Ralf Jung's avatar
Ralf Jung committed
462 463 464 465 466

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: