option.v 17.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
From iris.prelude Require Export tactics.
Robbert Krebbers's avatar
Robbert Krebbers committed
6
7
8
9
10
11
12

Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

(** * General definitions and theorems *)
(** Basic properties about equality. *)
13
Lemma None_ne_Some {A} (x : A) : None  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
Proof. congruence. Qed.
15
Lemma Some_ne_None {A} (x : A) : Some x  None.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
Proof. congruence. Qed.
17
Lemma eq_None_ne_Some {A} (mx : option A) x : mx = None  mx  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
18
Proof. congruence. Qed.
19
Instance Some_inj {A} : Inj (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
Proof. congruence. Qed.

22
23
(** The [from_option] is the eliminator for option. *)
Definition from_option {A B} (f : A  B) (y : B) (mx : option A) : B :=
24
  match mx with None => y | Some x => f x end.
25
26
Instance: Params (@from_option) 3.
Arguments from_option {_ _} _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
(* The eliminator again, but with the arguments in different order, which is
sometimes more convenient. *)
Notation default y mx f := (from_option f y mx) (only parsing).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
32
33

(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
34
35
36
Lemma option_eq {A} (mx my: option A): mx = my   x, mx = Some x  my = Some x.
Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed.
Lemma option_eq_1 {A} (mx my: option A) x : mx = my  mx = Some x  my = Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
37
Proof. congruence. Qed.
38
39
Lemma option_eq_1_alt {A} (mx my : option A) x :
  mx = my  my = Some x  mx = Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
Proof. congruence. Qed.

42
43
44
45
Definition is_Some {A} (mx : option A) :=  x, mx = Some x.
Instance: Params (@is_Some) 1.

Lemma mk_is_Some {A} (mx : option A) x : mx = Some x  is_Some mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
48
49
50
51
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.

52
Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Robbert Krebbers's avatar
Robbert Krebbers committed
53
Proof.
54
55
  set (P (mx : option A) := match mx with Some _ => True | _ => False end).
  set (f mx := match mx return P mx  is_Some mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
56
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
57
58
59
60
  set (g mx (H : is_Some mx) :=
    match H return P mx with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert ( mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
Robbert Krebbers's avatar
Robbert Krebbers committed
61
Qed.
62
63
Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
  match mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
64
65
66
67
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
  end.

68
69
70
71
72
Definition is_Some_proj {A} {mx : option A} : is_Some mx  A :=
  match mx with Some x => λ _, x | None => False_rect _  is_Some_None end.
Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } :=
  match mx return { x | mx = Some x } + { mx = None } with
  | Some x => inleft (x  eq_refl _)
Robbert Krebbers's avatar
Robbert Krebbers committed
73
74
75
  | None => inright eq_refl
  end.

76
77
78
79
Lemma eq_None_not_Some {A} (mx : option A) : mx = None  ¬is_Some mx.
Proof. destruct mx; unfold is_Some; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx  None  is_Some mx.
Proof. rewrite eq_None_not_Some; apply dec_stable; tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
81

(** Lifting a relation point-wise to option *)
82
83
84
Inductive option_Forall2 {A B} (R: A  B  Prop) : option A  option B  Prop :=
  | Some_Forall2 x y : R x y  option_Forall2 R (Some x) (Some y)
  | None_Forall2 : option_Forall2 R None None.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
91
92
93
Definition option_relation {A B} (R: A  B  Prop) (P: A  Prop) (Q: B  Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.

94
95
96
97
98
99
100
101
102
103
104
105
106
Section Forall2.
  Context {A} (R : relation A).

  Global Instance option_Forall2_refl : Reflexive R  Reflexive (option_Forall2 R).
  Proof. intros ? [?|]; by constructor. Qed.
  Global Instance option_Forall2_sym : Symmetric R  Symmetric (option_Forall2 R).
  Proof. destruct 2; by constructor. Qed.
  Global Instance option_Forall2_trans : Transitive R  Transitive (option_Forall2 R).
  Proof. destruct 2; inversion_clear 1; constructor; etrans; eauto. Qed.
  Global Instance option_Forall2_equiv : Equivalence R  Equivalence (option_Forall2 R).
  Proof. destruct 1; split; apply _. Qed.
End Forall2.

Robbert Krebbers's avatar
Robbert Krebbers committed
107
(** Setoids *)
108
109
Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 ().

Robbert Krebbers's avatar
Robbert Krebbers committed
110
Section setoids.
111
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
112
  Implicit Types mx my : option A.
113
114

  Lemma equiv_option_Forall2 mx my : mx  my  option_Forall2 () mx my.
115
  Proof. done. Qed.
116

117
  Global Instance option_equivalence : Equivalence (() : relation (option A)).
118
  Proof. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
  Global Instance Some_proper : Proper (() ==> ()) (@Some A).
  Proof. by constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
122
  Global Instance Some_equiv_inj : Inj () () (@Some A).
  Proof. by inversion_clear 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
124
  Proof. intros x y; destruct 1; fold_leibniz; congruence. Qed.
125

126
  Lemma equiv_None mx : mx  None  mx = None.
127
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
128
  Lemma equiv_Some_inv_l mx my x :
129
130
    mx  my  mx = Some x   y, my = Some y  x  y.
  Proof. destruct 1; naive_solver. Qed.
131
132
  Lemma equiv_Some_inv_r mx my y :
    mx  my  my = Some y   x, mx = Some x  x  y.
133
  Proof. destruct 1; naive_solver. Qed.
134
135
136
137
  Lemma equiv_Some_inv_l' my x : Some x  my   x', Some x' = my  x  x'.
  Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
  Lemma equiv_Some_inv_r' mx y : mx  Some y   y', mx = Some y'  y  y'.
  Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed.
138

Robbert Krebbers's avatar
Robbert Krebbers committed
139
140
  Global Instance is_Some_proper : Proper (() ==> iff) (@is_Some A).
  Proof. inversion_clear 1; split; eauto. Qed.
141
142
143
  Global Instance from_option_proper {B} (R : relation B) (f : A  B) :
    Proper (() ==> R) f  Proper (R ==> () ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
End setoids.

146
147
Typeclasses Opaque option_equiv.

Robbert Krebbers's avatar
Robbert Krebbers committed
148
(** Equality on [option] is decidable. *)
149
150
151
152
Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
  match mx with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
  match mx with Some _ => right (None_ne_Some _) | None => left eq_refl end.
153
Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A).
Robbert Krebbers's avatar
Robbert Krebbers committed
154
Proof.
155
 refine (λ mx my,
156
157
  match mx, my with
  | Some x, Some y => cast_if (decide (x = y))
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  | None, None => left _ | _, _ => right _
159
  end); clear dec; abstract congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
162
163
Defined.

(** * Monadic operations *)
Instance option_ret: MRet option := @Some.
164
165
166
167
Instance option_bind: MBind option := λ A B f mx,
  match mx with Some x => f x | None => None end.
Instance option_join: MJoin option := λ A mmx,
  match mmx with Some mx => mx | None => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Instance option_fmap: FMap option := @option_map.
169
170
Instance option_guard: MGuard option := λ P dec A f,
  match dec with left H => f H | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
Lemma fmap_is_Some {A B} (f : A  B) mx : is_Some (f <$> mx)  is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) mx y :
  f <$> mx = Some y   x, mx = Some x  y = f x.
Proof. destruct mx; naive_solver. Qed.
Lemma fmap_None {A B} (f : A  B) mx : f <$> mx = None  mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) mx :
  g  f <$> mx = g <$> f <$> mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A  B) mx :
  ( x, f x = g x)  f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
Lemma option_fmap_setoid_ext `{Equiv A, Equiv B} (f g : A  B) mx :
  ( x, f x  g x)  f <$> mx  g <$> mx.
Proof. destruct mx; constructor; auto. Qed.
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) mx :
  (f <$> mx) = g = mx = g  f.
Proof. by destruct mx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
Lemma option_bind_assoc {A B C} (f : A  option B)
194
195
196
197
198
199
200
  (g : B  option C) (mx : option A) : (mx = f) = g = mx = (mbind g  f).
Proof. by destruct mx; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A  option B) mx my :
  ( x, f x = g x)  mx = my  mx = f = my = g.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_bind_ext_fun {A B} (f g : A  option B) mx :
  ( x, f x = g x)  mx = f = mx = g.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
Proof. intros. by apply option_bind_ext. Qed.
202
203
204
205
206
207
208
209
Lemma bind_Some {A B} (f : A  option B) (mx : option A) y :
  mx = f = Some y   x, mx = Some x  f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_None {A B} (f : A  option B) (mx : option A) :
  mx = f = None  mx = None   x, mx = Some x  f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx = Some = mx.
Proof. by destruct mx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
210

211
212
213
214
Instance option_fmap_proper `{Equiv A, Equiv B} (f : A  B) :
  Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=option) f).
Proof. destruct 2; constructor; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A  B) :=
  maybe : B  option A.
Arguments maybe {_ _} _ {_} !_ /.
Class Maybe2 {A1 A2 B : Type} (c : A1  A2  B) :=
  maybe2 : B  option (A1 * A2).
Arguments maybe2 {_ _ _} _ {_} !_ /.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1  A2  A3  B) :=
  maybe3 : B  option (A1 * A2 * A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ /.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1  A2  A3  A4  B) :=
  maybe4 : B  option (A1 * A2 * A3 * A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ /.

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1  c2) := λ x,
  maybe c1 x = maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ /.

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.
Instance maybe_Some {A} : Maybe (@Some A) := id.
Arguments maybe_Some _ !_ /.

(** * Union, intersection and difference *)
243
244
245
246
247
Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
  | None, Some y => Some y
Robbert Krebbers's avatar
Robbert Krebbers committed
248
249
250
  | None, None => None
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
251
252
253
254
255
  λ f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
258
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
259
260
261
262

Lemma option_union_Some {A} (mx my : option A) z :
  mx  my = Some z  mx = Some z  my = Some z.
Proof. destruct mx, my; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
263

264
265
266
267
Class DiagNone {A B C} (f : option A  option B  option C) :=
  diag_none : f None None = None.

Section union_intersection_difference.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
  Context {A} (f : A  A  option A).
269
270
271
272
273
274
275
276

  Global Instance union_with_diag_none : DiagNone (union_with f).
  Proof. reflexivity. Qed.
  Global Instance intersection_with_diag_none : DiagNone (intersection_with f).
  Proof. reflexivity. Qed.
  Global Instance difference_with_diag_none : DiagNone (difference_with f).
  Proof. reflexivity. Qed.
  Global Instance union_with_left_id : LeftId (=) None (union_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
277
  Proof. by intros [?|]. Qed.
278
  Global Instance union_with_right_id : RightId (=) None (union_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
279
  Proof. by intros [?|]. Qed.
280
  Global Instance union_with_comm : Comm (=) f  Comm (=) (union_with f).
281
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
282
  Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
283
  Proof. by intros [?|]. Qed.
284
  Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
285
  Proof. by intros [?|]. Qed.
286
  Global Instance difference_with_comm : Comm (=) f  Comm (=) (intersection_with f).
287
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
288
  Global Instance difference_with_right_id : RightId (=) None (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
289
  Proof. by intros [?|]. Qed.
290
End union_intersection_difference.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
292
293
294
295

(** * Tactics *)
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
  | H : appcontext C [@mguard option _ ?P ?dec] |- _ =>
296
297
    change (@mguard option _ P dec) with (λ A (f : P  option A),
      match @decide P dec with left H' => f H' | _ => None end) in *;
Robbert Krebbers's avatar
Robbert Krebbers committed
298
299
    destruct_decide (@decide P dec) as Hx
  | |- appcontext C [@mguard option _ ?P ?dec] =>
300
301
    change (@mguard option _ P dec) with (λ A (f : P  option A),
      match @decide P dec with left H' => f H' | _ => None end) in *;
Robbert Krebbers's avatar
Robbert Krebbers committed
302
303
304
305
306
    destruct_decide (@decide P dec) as Hx
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.

307
308
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
  P  guard P; mx = mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Proof. intros. by case_option_guard. Qed.
310
311
Lemma option_guard_False {A} P `{Decision P} (mx : option A) :
  ¬P  guard P; mx = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
312
Proof. intros. by case_option_guard. Qed.
313
314
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
  (P  Q)  guard P; mx = guard Q; mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
Proof. intros [??]. repeat case_option_guard; intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
317
Tactic Notation "simpl_option" "by" tactic3(tac) :=
318
  let assert_Some_None A mx H := first
Robbert Krebbers's avatar
Robbert Krebbers committed
319
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
320
321
      assert (mx = Some x') as H by tac
    | assert (mx = None) as H by tac ]
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
  in repeat match goal with
  | H : appcontext [@mret _ _ ?A] |- _ =>
     change (@mret _ _ A) with (@Some A) in H
  | |- appcontext [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
326
327
328
329
  | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
330
  | H : context [from_option (A:=?A) _ _ ?mx] |- _ =>
331
332
333
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?mx with _ => _ end ] |- _ =>
    match type of mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
334
    | option ?A =>
335
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
336
    end
337
338
339
340
  | |- context [mbind (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
341
  | |- context [from_option (A:=?A) _ _ ?mx] =>
342
343
344
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [ match ?mx with _ => _ end ] =>
    match type of mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
345
    | option ?A =>
346
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348
349
350
351
352
353
354
355
    end
  | H : context [decide _] |- _ => rewrite decide_True in H by tac
  | H : context [decide _] |- _ => rewrite decide_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
356
357
358
359
  | H : context [None  _] |- _ => rewrite (left_id_L None ()) in H
  | H : context [_  None] |- _ => rewrite (right_id_L None ()) in H
  | |- context [None  _] => rewrite (left_id_L None ())
  | |- context [_  None] => rewrite (right_id_L None ())
Robbert Krebbers's avatar
Robbert Krebbers committed
360
  end.
361
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
362
  repeat match goal with
363
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
364
  | _ => progress simpl_option by tac
Robbert Krebbers's avatar
Robbert Krebbers committed
365
366
367
368
369
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  | H : mbind (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (f x = my) in H|change (None = my) in H]
  | H : ?my = mbind (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = f x) in H|change (my = None) in H]
  | H : fmap (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (Some (f x) = my) in H|change (None = my) in H]
  | H : ?my = fmap (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = Some (f x)) in H|change (my = None) in H]
Robbert Krebbers's avatar
Robbert Krebbers committed
390
391
392
  | _ => progress case_decide
  | _ => progress case_option_guard
  end.
393
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.