tree_sum.v 2.07 KB
Newer Older
1 2
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
3 4 5 6 7 8 9
From iris.proofmode Require Export tactics.
From iris.heap_lang Require Import proofmode notation.

Inductive tree :=
  | leaf : Z  tree
  | node : tree  tree  tree.

10
Fixpoint is_tree `{!heapG Σ} (v : val) (t : tree) : iProp Σ :=
11
  match t with
Ralf Jung's avatar
Ralf Jung committed
12
  | leaf n => v = InjLV #n
13 14
  | node tl tr =>
      (ll lr : loc) (vl vr : val),
Ralf Jung's avatar
Ralf Jung committed
15
       v = InjRV (#ll,#lr)  ll  vl  is_tree vl tl  lr  vr  is_tree vr tr
16 17 18 19 20 21 22 23 24 25
  end%I.

Fixpoint sum (t : tree) : Z :=
  match t with
  | leaf n => n
  | node tl tr => sum tl + sum tr
  end.

Definition sum_loop : val :=
  rec: "sum_loop" "t" "l" :=
26 27 28
    match: "t" with
      InjL "n" => "l" <- "n" + !"l"
    | InjR "tt" => "sum_loop" !(Fst "tt") "l" ;; "sum_loop" !(Snd "tt") "l"
29 30 31 32
    end.

Definition sum' : val := λ: "t",
  let: "l" := ref #0 in
33 34
  sum_loop "t" "l";;
  !"l".
35

36
Lemma sum_loop_wp `{!heapG Σ} v t l (n : Z) (Φ : val  iProp Σ) :
37 38
  heap_ctx  l  #n  is_tree v t
     (l  #(sum t + n) - is_tree v t - Φ #())
39 40 41
   WP sum_loop v #l {{ Φ }}.
Proof.
  iIntros "(#Hh & Hl & Ht & HΦ)".
42
  iLöb as "IH" forall (v t l n Φ). wp_rec. wp_let.
43 44
  destruct t as [n'|tl tr]; simpl in *.
  - iDestruct "Ht" as "%"; subst.
45
    wp_match. wp_load. wp_op. wp_store.
46
    by iApply ("HΦ" with "Hl").
47
  - iDestruct "Ht" as (ll lr vl vr) "(% & Hll & Htl & Hlr & Htr)"; subst.
48
    wp_match. wp_proj. wp_load.
49 50 51 52 53 54 55 56
    wp_apply ("IH" with "Hl Htl"). iIntros "Hl Htl".
    wp_seq. wp_proj. wp_load.
    wp_apply ("IH" with "Hl Htr"). iIntros "Hl Htr".
    iApply ("HΦ" with "[Hl]").
    { by replace (sum tl + sum tr + n) with (sum tr + (sum tl + n)) by omega. }
    iExists ll, lr, vl, vr. by iFrame.
Qed.

57
Lemma sum_wp `{!heapG Σ} v t Φ :
58
  heap_ctx  is_tree v t  (is_tree v t - Φ #(sum t))
59 60
   WP sum' v {{ Φ }}.
Proof.
61
  iIntros "(#Hh & Ht & HΦ)". rewrite /sum' /=.
62
  wp_let. wp_alloc l as "Hl". wp_let.
63
  wp_apply (sum_loop_wp with "[- $Hh $Ht $Hl]").
64 65 66
  rewrite Z.add_0_r.
  iIntros "Hl Ht". wp_seq. wp_load. by iApply "HΦ".
Qed.