functions.v 6.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
From iris.algebra Require Export cmra.
From iris.algebra Require Import updates.
From stdpp Require Import finite.
Set Default Proof Using "Type".

Definition ofe_fun_insert `{EqDecision A} {B : A  ofeT}
    (x : A) (y : B x) (f : ofe_fun B) : ofe_fun B := λ x',
  match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end.
Instance: Params (@ofe_fun_insert) 5.

11
Definition ofe_fun_singleton `{EqDecision A} {B : A  ucmraT}
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
  (x : A) (y : B x) : ofe_fun B := ofe_fun_insert x y ε.
Instance: Params (@ofe_fun_singleton) 5.

Section ofe.
  Context `{Heqdec : EqDecision A} {B : A  ofeT}.
  Implicit Types x : A.
  Implicit Types f g : ofe_fun B.

  (** Properties of ofe_fun_insert. *)
  Global Instance ofe_fun_insert_ne x :
    NonExpansive2 (ofe_fun_insert (B:=B) x).
  Proof.
    intros n y1 y2 ? f1 f2 ? x'; rewrite /ofe_fun_insert.
    by destruct (decide _) as [[]|].
  Qed.
  Global Instance ofe_fun_insert_proper x :
28
    Proper (() ==> () ==> ()) (ofe_fun_insert (B:=B) x) := ne_proper_2 _.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

  Lemma ofe_fun_lookup_insert f x y : (ofe_fun_insert x y f) x = y.
  Proof.
    rewrite /ofe_fun_insert; destruct (decide _) as [Hx|]; last done.
    by rewrite (proof_irrel Hx eq_refl).
  Qed.
  Lemma ofe_fun_lookup_insert_ne f x x' y :
    x  x'  (ofe_fun_insert x y f) x' = f x'.
  Proof. by rewrite /ofe_fun_insert; destruct (decide _). Qed.

  Global Instance ofe_fun_insert_discrete f x y :
    Discrete f  Discrete y  Discrete (ofe_fun_insert x y f).
  Proof.
    intros ?? g Heq x'; destruct (decide (x = x')) as [->|].
    - rewrite ofe_fun_lookup_insert.
      apply: discrete. by rewrite -(Heq x') ofe_fun_lookup_insert.
    - rewrite ofe_fun_lookup_insert_ne //.
      apply: discrete. by rewrite -(Heq x') ofe_fun_lookup_insert_ne.
  Qed.
End ofe.

Section cmra.
51
  Context `{EqDecision A} {B : A  ucmraT}.
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  Implicit Types x : A.
  Implicit Types f g : ofe_fun B.

  Global Instance ofe_fun_singleton_ne x :
    NonExpansive (ofe_fun_singleton x : B x  _).
  Proof. intros n y1 y2 ?; apply ofe_fun_insert_ne. done. by apply equiv_dist. Qed.
  Global Instance ofe_fun_singleton_proper x :
    Proper (() ==> ()) (ofe_fun_singleton x) := ne_proper _.

  Lemma ofe_fun_lookup_singleton x (y : B x) : (ofe_fun_singleton x y) x = y.
  Proof. by rewrite /ofe_fun_singleton ofe_fun_lookup_insert. Qed.
  Lemma ofe_fun_lookup_singleton_ne x x' (y : B x) :
    x  x'  (ofe_fun_singleton x y) x' = ε.
  Proof. intros; by rewrite /ofe_fun_singleton ofe_fun_lookup_insert_ne. Qed.

  Global Instance ofe_fun_singleton_discrete x (y : B x) :
    ( i, Discrete (ε : B i))   Discrete y  Discrete (ofe_fun_singleton x y).
  Proof. apply _. Qed.

  Lemma ofe_fun_singleton_validN n x (y : B x) : {n} ofe_fun_singleton x y  {n} y.
  Proof.
    split; [by move=>/(_ x); rewrite ofe_fun_lookup_singleton|].
    move=>Hx x'; destruct (decide (x = x')) as [->|];
      rewrite ?ofe_fun_lookup_singleton ?ofe_fun_lookup_singleton_ne //.
    by apply ucmra_unit_validN.
  Qed.

  Lemma ofe_fun_core_singleton x (y : B x) :
    core (ofe_fun_singleton x y)  ofe_fun_singleton x (core y).
  Proof.
    move=>x'; destruct (decide (x = x')) as [->|];
      by rewrite ofe_fun_lookup_core ?ofe_fun_lookup_singleton
      ?ofe_fun_lookup_singleton_ne // (core_id_core ).
  Qed.

  Global Instance ofe_fun_singleton_core_id x (y : B x) :
    CoreId y  CoreId (ofe_fun_singleton x y).
  Proof. by rewrite !core_id_total ofe_fun_core_singleton=> ->. Qed.

  Lemma ofe_fun_op_singleton (x : A) (y1 y2 : B x) :
    ofe_fun_singleton x y1  ofe_fun_singleton x y2  ofe_fun_singleton x (y1  y2).
  Proof.
    intros x'; destruct (decide (x' = x)) as [->|].
    - by rewrite ofe_fun_lookup_op !ofe_fun_lookup_singleton.
    - by rewrite ofe_fun_lookup_op !ofe_fun_lookup_singleton_ne // left_id.
  Qed.

  Lemma ofe_fun_insert_updateP x (P : B x  Prop) (Q : ofe_fun B  Prop) g y1 :
    y1 ~~>: P  ( y2, P y2  Q (ofe_fun_insert x y2 g)) 
    ofe_fun_insert x y1 g ~~>: Q.
  Proof.
    intros Hy1 HP; apply cmra_total_updateP.
    intros n gf Hg. destruct (Hy1 n (Some (gf x))) as (y2&?&?).
    { move: (Hg x). by rewrite ofe_fun_lookup_op ofe_fun_lookup_insert. }
    exists (ofe_fun_insert x y2 g); split; [auto|].
    intros x'; destruct (decide (x' = x)) as [->|];
      rewrite ofe_fun_lookup_op ?ofe_fun_lookup_insert //; [].
    move: (Hg x'). by rewrite ofe_fun_lookup_op !ofe_fun_lookup_insert_ne.
  Qed.

  Lemma ofe_fun_insert_updateP' x (P : B x  Prop) g y1 :
    y1 ~~>: P 
    ofe_fun_insert x y1 g ~~>: λ g',  y2, g' = ofe_fun_insert x y2 g  P y2.
  Proof. eauto using ofe_fun_insert_updateP. Qed.
  Lemma ofe_fun_insert_update g x y1 y2 :
    y1 ~~> y2  ofe_fun_insert x y1 g ~~> ofe_fun_insert x y2 g.
  Proof.
    rewrite !cmra_update_updateP; eauto using ofe_fun_insert_updateP with subst.
  Qed.

  Lemma ofe_fun_singleton_updateP x (P : B x  Prop) (Q : ofe_fun B  Prop) y1 :
    y1 ~~>: P  ( y2, P y2  Q (ofe_fun_singleton x y2)) 
    ofe_fun_singleton x y1 ~~>: Q.
  Proof. rewrite /ofe_fun_singleton; eauto using ofe_fun_insert_updateP. Qed.
  Lemma ofe_fun_singleton_updateP' x (P : B x  Prop) y1 :
    y1 ~~>: P 
    ofe_fun_singleton x y1 ~~>: λ g,  y2, g = ofe_fun_singleton x y2  P y2.
  Proof. eauto using ofe_fun_singleton_updateP. Qed.
  Lemma ofe_fun_singleton_update x (y1 y2 : B x) :
    y1 ~~> y2  ofe_fun_singleton x y1 ~~> ofe_fun_singleton x y2.
  Proof. eauto using ofe_fun_insert_update. Qed.

  Lemma ofe_fun_singleton_updateP_empty x (P : B x  Prop) (Q : ofe_fun B  Prop) :
    ε ~~>: P  ( y2, P y2  Q (ofe_fun_singleton x y2))  ε ~~>: Q.
  Proof.
    intros Hx HQ; apply cmra_total_updateP.
    intros n gf Hg. destruct (Hx n (Some (gf x))) as (y2&?&?); first apply Hg.
    exists (ofe_fun_singleton x y2); split; [by apply HQ|].
    intros x'; destruct (decide (x' = x)) as [->|].
    - by rewrite ofe_fun_lookup_op ofe_fun_lookup_singleton.
    - rewrite ofe_fun_lookup_op ofe_fun_lookup_singleton_ne //. apply Hg.
  Qed.
  Lemma ofe_fun_singleton_updateP_empty' x (P : B x  Prop) :
    ε ~~>: P  ε ~~>: λ g,  y2, g = ofe_fun_singleton x y2  P y2.
  Proof. eauto using ofe_fun_singleton_updateP_empty. Qed.
  Lemma ofe_fun_singleton_update_empty x (y : B x) :
    ε ~~> y  ε ~~> ofe_fun_singleton x y.
  Proof.
    rewrite !cmra_update_updateP;
      eauto using ofe_fun_singleton_updateP_empty with subst.
  Qed.
End cmra.