ltac_tactics.v 109 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28 29 30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33 34 35 36 37 38 39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40 41 42 43 44 45 46 47
(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
48
  let Hhyps := pm_eval (envs_dom Δ) in
49 50 51 52
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
53
  pm_eval (envs_lookup H Δ).
54

55 56 57
Ltac iBiOfGoal :=
  match goal with |- @envs_entails ?PROP _ _ => PROP end.

58 59 60 61 62 63 64 65 66 67
Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
68
               [iSolveTC || fail "iStartProof: not a BI assertion"
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
89
               [iSolveTC || fail "iStartProof: not a BI assertion"
90 91 92 93 94 95 96 97 98 99 100 101
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
102
      | _ => iStartProof; eapply tac_fresh; first by (pm_reflexivity)
103 104 105
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
106
    let n := pm_eval (env_counter Δ) in
107 108 109 110 111 112 113 114 115 116
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

117 118 119 120 121 122 123 124 125 126 127 128
Ltac iEval_go t Hs :=
  match Hs with
  | [] => idtac
  | ?H :: ?Hs =>
    let H := pretty_ident H in
    eapply tac_eval_in with _ H _ _ _;
      [pm_reflexivity || fail "iEval:" H "not found"
      |let x := fresh in intros x; t; unfold x; reflexivity
      |pm_reflexivity
      |iEval_go t Hs]
  end.

129 130
Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
131
  let Hs := words H in iEval_go t Hs.
132

Robbert Krebbers's avatar
Robbert Krebbers committed
133 134
Tactic Notation "iSimpl" := iEval (simpl).
Tactic Notation "iSimpl" "in" constr(H) := iEval (simpl) in H.
135 136 137 138 139 140

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

Robbert Krebbers's avatar
Robbert Krebbers committed
141 142
PMP told me (= Robbert) in person that this is not possible with the current
Ltac, but it may be possible in Ltac2. *)
143 144 145 146

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
147 148 149 150 151 152
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iRename:" H2 "not fresh"|].
153

154
Inductive esel_pat :=
155 156 157
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ralf Jung's avatar
Ralf Jung committed
158
Local Ltac iElaborateSelPat_go pat Δ Hs :=
159 160 161
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
162
  | SelIntuitionistic :: ?pat =>
163
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
164
    let Δ' := pm_eval (envs_clear_intuitionistic Δ) in
165 166
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
167 168
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
169 170
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
171
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
172
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
173 174 175
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
176 177
    end
  end.
178 179 180
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
181
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
182 183 184 185
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
186 187 188
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
189
    |pm_reduce; iSolveTC ||
190
     let H := pretty_ident H in
191 192 193 194
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

195 196 197 198 199 200
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
201
Tactic Notation "iClear" constr(Hs) :=
202
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
203 204 205 206 207 208 209

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
210
    [pm_reflexivity ||
211
     let H := pretty_ident H in
212
     fail "iExact:" H "not found"
213
    |iSolveTC ||
214
     let H := pretty_ident H in
215 216
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
217
    |pm_reduce; iSolveTC ||
218
     let H := pretty_ident H in
219 220 221 222 223 224 225 226 227
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
228
     first [is_evar i; fail 1 | pm_reflexivity]
229
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
230
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
231
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
232
     first [is_evar i; fail 1 | pm_reflexivity]
233
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
234
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
235 236 237 238 239 240 241 242 243
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
244
          [pm_reflexivity
245
          |apply Hass
246
          |pm_reduce; iSolveTC ||
247 248 249
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
250
          [pm_reflexivity
251 252 253 254 255 256 257 258 259 260 261 262
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

263 264 265
(** * Making hypotheses intuitionistic or pure *)
Local Tactic Notation "iIntuitionistic" constr(H) :=
  eapply tac_intuitionistic with _ H _ _ _; (* (i:=H) *)
266 267
    [pm_reflexivity ||
     let H := pretty_ident H in
268
     fail "iIntuitionistic:" H "not found"
269
    |iSolveTC ||
270
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
271
     fail "iIntuitionistic:" P "not persistent"
272
    |pm_reduce; iSolveTC ||
273
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
274
     fail "iIntuitionistic:" P "not affine and the goal not absorbing"
275
    |pm_reflexivity|].
276 277 278

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
279 280 281
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
282
    |iSolveTC ||
283 284
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
285
    |pm_reduce; iSolveTC ||
286 287 288 289 290 291 292
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
293
    [pm_reduce; iSolveTC ||
294 295 296 297 298
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
299
    [pm_reflexivity
300
    |iSolveTC ||
301 302 303 304 305 306
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
307
  pm_prettify;
308 309 310 311 312 313 314 315 316
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
317
    [iSolveTC || fail "iFrame: cannot frame" φ
318 319 320 321 322
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
323 324 325
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
326
    |iSolveTC ||
327 328 329 330 331 332 333
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

334
Local Ltac iFrameAnyIntuitionistic :=
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

375 376 377 378
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
379
  | SelIntuitionistic :: ?Hs => iFrameAnyIntuitionistic; iFrame_go Hs
380 381 382 383
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

384
Tactic Notation "iFrame" constr(Hs) :=
385
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  (* We use [_ || _] instead of [first [..|..]] so that the error in the second
  branch propagates upwards. *)
  (
    (* introduction at the meta level *)
    intros x
  ) || (
    (* introduction in the logic *)
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ _ =>
      eapply tac_forall_intro;
        [iSolveTC ||
         let P := match goal with |- FromForall ?P _ => P end in
         fail "iIntro: cannot turn" P "into a universal quantifier"
        |pm_prettify; intros x
         (* subgoal *)]
    end).
431 432 433 434

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
435
  [(* (?Q → _) *)
436
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
437
      [iSolveTC
438
      |pm_reduce; iSolveTC ||
439 440 441
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
442 443 444
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
445
      |iSolveTC
446 447
      |(* subgoal *)]
  |(* (_ -∗ _) *)
448
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
449
      [iSolveTC
450 451 452
      | pm_reflexivity ||
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
453 454
      |(* subgoal *)]
  | fail 1 "iIntro: nothing to introduce" ].
455 456 457 458

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
459
  [(* (?P → _) *)
460
   eapply tac_impl_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
461 462 463 464 465 466 467 468 469
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
      fail 1 "iIntro:" P "not persistent"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |(* (?P -∗ _) *)
470
   eapply tac_wand_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
471 472 473
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
474
      fail 1 "iIntro:" P "not intuitionistic"
475 476 477 478 479 480 481 482
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |fail 1 "iIntro: nothing to introduce"].
483

484 485 486 487 488 489
Local Tactic Notation "iIntro" constr(H) "as" constr(p) :=
  lazymatch p with
  | true => iIntro #H
  | _ =>  iIntro H
  end.

490
Local Tactic Notation "iIntro" "_" :=
491
  iStartProof;
492
  first
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
  [(* (?Q → _) *)
   eapply tac_impl_intro_drop;
     [iSolveTC
     |(* subgoal *)]
  |(* (_ -∗ _) *)
   eapply tac_wand_intro_drop;
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |(* subgoal *)]
  |(* (∀ _, _) *)
   iIntro (_)
   (* subgoal *)
  |fail 1 "iIntro: nothing to introduce"].
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

546 547 548 549 550 551 552 553
(** The tactic [iRevertHyp H with tac] reverts the hypothesis [H] and calls
[tac] with a Boolean that is [true] iff [H] was in the intuitionistic context. *)
Tactic Notation "iRevertHyp" constr(H) "with" tactic1(tac) :=
  (* Create a Boolean evar [p] to keep track of whether the hypothesis [H] was
  in the intuitionistic context. *)
  let p := fresh in evar (p : bool);
  let p' := eval unfold p in p in clear p;
  eapply tac_revert with _ H p' _;
554 555 556
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iRevert:" H "not found"
557 558 559
    |pm_reduce; tac p'].

Tactic Notation "iRevertHyp" constr(H) := iRevertHyp H with (fun _ => idtac).
560

561 562 563 564 565 566 567
Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
568
    | ESelIdent _ ?H :: ?Hs => iRevertHyp H; go Hs
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    end in
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

615
(** * The specialize and pose proof tactics *)
616 617 618 619 620 621 622 623 624 625
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Local Ltac iIntoEmpValid t :=
  let go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|iIntoEmpValid uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; iIntoEmpValid (t e')
    end
  in
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
          |exact t]].

Tactic Notation "iPoseProofCoreHyp" constr(H) "as" constr(Hnew) :=
  eapply tac_pose_proof_hyp with _ _ H _ Hnew _;
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPoseProof:" H "not found"
    |pm_reflexivity ||
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |].

Tactic Notation "iPoseProofCoreLem"
    constr(lem) "as" constr(Hnew) "before_tc" tactic(tac) :=
  eapply tac_pose_proof with _ Hnew _; (* (j:=H) *)
    [iIntoEmpValid lem
    |pm_reflexivity ||
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |tac];
  (* Solve all remaining TC premises generated by [iIntoEmpValid] *)
  try iSolveTC.

694 695 696 697 698
(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
699
Local Ltac iSpecializeArgs_go H xs :=
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
  lazymatch xs with
  | hnil => idtac
  | hcons ?x ?xs =>
     notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
       [pm_reflexivity ||
        let H := pretty_ident H in
        fail "iSpecialize:" H "not found"
       |iSolveTC ||
        let P := match goal with |- IntoForall ?P _ => P end in
        fail "iSpecialize: cannot instantiate" P "with" x
       |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
        | |-  _ : ?A, _ =>
          notypeclasses refine (@ex_intro A _ x (conj _ _))
        end; [shelve..|pm_reflexivity|iSpecializeArgs_go H xs]]
  end.
715 716
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
717

718
Ltac iSpecializePat_go H1 pats :=
719 720 721 722 723 724 725 726 727 728 729 730
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
731
  lazymatch pats with
732 733 734
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
735
       iSpecializePat_go H1 pats
736 737 738 739
    | SIdent ?H2 [] :: ?pats =>
       (* If we not need to specialize [H2] we can avoid a lot of unncessary
       context manipulation. *)
       notypeclasses refine (tac_specialize false _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
740 741 742 743 744 745
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
746 747 748 749
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
750
         |pm_reflexivity|iSpecializePat_go H1 pats]
751 752 753 754 755 756 757 758 759 760
    | SIdent ?H2 ?pats1 :: ?pats =>
       (* If [H2] is in the intuitionistic context, we copy it into a new
       hypothesis [Htmp], so that it can be used multiple times. *)
       let H2tmp := iFresh in
       iPoseProofCoreHyp H2 as H2tmp;
       (* Revert [H1] and re-introduce it later so that it will not be consumsed
       by [pats1]. *)
       iRevertHyp H1 with (fun p =>
         iSpecializePat_go H2tmp pats1;
           [.. (* side-conditions of [iSpecialize] *)
761
           |iIntro H1 as p]);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
         (* We put the stuff below outside of the closure to get less verbose
         Ltac backtraces (which would otherwise include the whole closure). *)
         [.. (* side-conditions of [iSpecialize] *)
         |(* Use [remove_intuitionistic = true] to remove the copy [Htmp]. *)
          notypeclasses refine (tac_specialize true _ _ _ H2tmp _ H1 _ _ _ _ _ _ _ _ _ _);
            [pm_reflexivity ||
             let H2tmp := pretty_ident H2tmp in
             fail "iSpecialize:" H2tmp "not found"
            |pm_reflexivity ||
             let H1 := pretty_ident H1 in
             fail "iSpecialize:" H1 "not found"
            |iSolveTC ||
             let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
             let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
             fail "iSpecialize: cannot instantiate" P "with" Q
            |pm_reflexivity|iSpecializePat_go H1 pats]]
778 779
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
780 781 782
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
783 784 785 786
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
787
         |pm_reflexivity
788
         |solve_done d (*goal*)
789
         |iSpecializePat_go H1 pats]
790 791
    | SGoal (SpecGoal GIntuitionistic false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
792 793 794
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
795 796 797 798 799
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
800
         |pm_reflexivity
801
         |iFrame Hs_frame; solve_done d (*goal*)
802
         |iSpecializePat_go H1 pats]
803 804
    | SGoal (SpecGoal GIntuitionistic _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for intuitionistic premise"
805 806 807
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
808 809 810
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
811 812
         |solve_to_wand H1
         |lazymatch m with
813
          | GSpatial => class_apply add_modal_id
814 815
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
816
         |pm_reflexivity ||
817 818 819
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
820
         |iSpecializePat_go H1 pats]
821 822
    | SAutoFrame GIntuitionistic :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
823 824 825
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
826 827 828 829
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
830
         |pm_reflexivity
831
         |solve [iFrame "∗ #"]
832
         |iSpecializePat_go H1 pats]
833 834
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
835 836 837
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
838 839
         |solve_to_wand H1
         |lazymatch m with
Robbert Krebbers's avatar
Robbert Krebbers committed
840
          | GSpatial => class_apply add_modal_id
841 842 843 844 845 846 847
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
848 849 850 851 852
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
853 854

(* The argument [p] denotes whether the conclusion of the specialized term is
855
intuitionistic. If so, one can use all spatial hypotheses for both proving the
856 857 858 859 860 861 862 863 864
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
865
  let p := intro_pat_intuitionistic p in
866 867 868 869 870 871 872
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
Robbert Krebbers's avatar
Robbert Krebbers committed
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    lazymatch type of H with
    | ident =>
       (* The lemma [tac_specialize_intuitionistic_helper] allows one to use the
       whole spatial context for:
       - proving the premises of the lemma we specialize, and,
       - the remaining goal.

       We can only use if all of the following properties hold:
       - The result of the specialization is persistent.
       - No modality is eliminated.
       - If the BI is not affine, the hypothesis should be in the intuitionistic
         context.

       As an optimization, we do only use [tac_specialize_intuitionistic_helper]
       if no implications nor wands are eliminated, i.e. [pat ≠ []]. *)
       let pat := spec_pat.parse pat in
       lazymatch eval compute in
         (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
       | true =>
          (* Check that if the BI is not affine, the hypothesis is in the
          intuitionistic context. *)
          lazymatch iTypeOf H with
          | Some (?q, _) =>
             let PROP := iBiOfGoal in
             lazymatch eval compute in (q || tc_to_bool (BiAffine PROP)) with
             | true =>
                notypeclasses refine (tac_specialize_intuitionistic_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
                  [pm_reflexivity
                   (* This premise, [envs_lookup j Δ = Some (q,P)],
                   holds because [iTypeOf] succeeded *)
                  |pm_reduce; iSolveTC
                   (* This premise, [if q then TCTrue else BiAffine PROP],
                   holds because [q || TC_to_bool (BiAffine PROP)] is true *)
                  |iSpecializePat H pat;
                    [..
                    |notypeclasses refine (tac_specialize_intuitionistic_helper_done _ H _ _ _);
                     pm_reflexivity]
                  |iSolveTC ||
                   let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
                   fail "iSpecialize:" Q "not persistent"
                  |pm_reflexivity
                  |(* goal *)]
             | false => iSpecializePat H pat
             end
          | None =>
             let H := pretty_ident H in
             fail "iSpecialize:" H "not found"
          end
       | false => iSpecializePat H pat
       end
    | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
    end].
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

942 943 944 945 946 947 948 949 950 951
(** The tactic [iPoseProofCore lem as p lazy_tc tac] inserts the resource
described by [lem] into the context. The tactic takes a continuation [tac] as
its argument, which is called with a temporary fresh name [H] that refers to
the hypothesis containing [lem].

There are a couple of additional arguments:

- The argument [p] is like that of [iSpecialize]. It is a Boolean that denotes
  whether the conclusion of the specialized term [lem] is persistent.
- The argument [lazy_tc] denotes whether type class inference on the premises
Robbert Krebbers's avatar
Robbert Krebbers committed
952 953
  of [lem] should be performed before (if [lazy_tc = false]) or after (if
  [lazy_tc = true]) [tac H] is called.
954 955 956 957 958 959 960 961 962 963

Both variants of [lazy_tc] are used in other tactics that build on top of
[iPoseProofCore]:

- The tactic [iApply] uses lazy type class inference (i.e. [lazy_tc = true]),
  so that evars can first be matched against the goal before being solved by
  type class inference.
- The tactic [iDestruct] uses eager type class inference (i.e. [lazy_tc = false])
  because it may be not possible to eliminate logical connectives before all
  type class constraints have been resolved. *)
964 965 966 967 968 969 970 971
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
Robbert Krebbers's avatar
Robbert Krebbers committed
972
    | ITrm _ ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
973 974
    | _ => idtac
    end in
Robbert Krebbers's avatar
Robbert Krebbers committed
975 976 977 978 979 980 981 982 983
  lazymatch type of t with
  | ident => iPoseProofCoreHyp t as Htmp; spec_tac (); [..|tac Htmp]
  | _ =>
     lazymatch eval compute in lazy_tc with
     | true =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac (); [..|tac Htmp])
     | false =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac ()); [..|tac Htmp]
     end
984 985
  end.

986
(** * The apply tactic *)
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
(** [iApply lem] takes an argument [lem : P₁ -∗ .. -∗ Pₙ -∗ Q] (after the
specialization patterns in [lem] have been executed), where [Q] should match
the goal, and generates new goals [P1] ... [Pₙ]. Depending on the number of
premises [n], the tactic will have the following behavior:

- If [n = 0], it will immediately solve the goal (i.e. it will not generate any
  subgoals). When working in a general BI, this means that the tactic can fail
  in case there are non-affine spatial hypotheses in the context prior to using
  the [iApply] tactic. Note that if [n = 0], the tactic behaves exactly like
  [iExact lem].
- If [n > 0] it will generate a goals [P₁] ... [Pₙ]. All spatial hypotheses
  will be transferred to the last goal, i.e. [Pₙ]; the other goals will receive
  no spatial hypotheses. If you want to control more precisely how the spatial
  hypotheses are subdivided, you should add additional introduction patterns to
  [lem]. *)

(* The helper [iApplyHypExact] takes care of the [n=0] case. It fails with level
0 if we should proceed to the [n > 0] case, and with level 1 if there is an
actual error. *)
Local Ltac iApplyHypExact H :=
  first
    [eapply tac_assumption with _ H _ _; (* (i:=H) *)
       [pm_reflexivity || fail 1
       |iSolveTC || fail 1
       |pm_reduce; iSolveTC]
    |lazymatch iTypeOf H with
     | Some (_,?Q) =>
        fail 2 "iApply:" Q "not absorbing and the remaining hypotheses not affine"
     end].
Local Ltac iApplyHypLoop H :=
  first
1018
    [eapply tac_apply with _ H _ _ _;
1019
      [pm_reflexivity
1020
      |iSolveTC
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
      |pm_prettify (* reduce redexes created by instantiation *)]
    |iSpecializePat H "[]"; last iApplyHypLoop H].

Tactic Notation "iApplyHyp" constr(H) :=
  first
    [iApplyHypExact H
    |iApplyHypLoop H
    |lazymatch iTypeOf H with
     | Some (_,?Q) => fail 1 "iApply: cannot apply" Q
     end].
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
1042
    |(* subgoal *)].
1043 1044 1045 1046 1047 1048
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with