vector.v 13.2 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on vectors
(lists of fixed length) and the fin type (bounded naturals). It uses the
definitions from the standard library, but renames or changes their notations,
so that it becomes more consistent with the naming conventions in this
development. *)
8
Require Import prelude.list prelude.finite.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
Open Scope vector_scope.

(** * The fin type *)
(** The type [fin n] represents natural numbers [i] with [0 ≤ i < n]. We
define a scope [fin], in which we declare notations for small literals of the
[fin] type. Whereas the standard library starts counting at [1], we start
counting at [0]. This way, the embedding [fin_to_nat] preserves [0], and allows
us to define [fin_to_nat] as a coercion without introducing notational
ambiguity. *)
Notation fin := Fin.t.
Notation FS := Fin.FS.

Delimit Scope fin_scope with fin.
Arguments Fin.FS _ _%fin.

Notation "0" := Fin.F1 : fin_scope. Notation "1" := (FS 0) : fin_scope.
Notation "2" := (FS 1) : fin_scope. Notation "3" := (FS 2) : fin_scope.
Notation "4" := (FS 3) : fin_scope. Notation "5" := (FS 4) : fin_scope.
Notation "6" := (FS 5) : fin_scope. Notation "7" := (FS 6) : fin_scope.
Notation "8" := (FS 7) : fin_scope. Notation "9" := (FS 8) : fin_scope.
Notation "10" := (FS 9) : fin_scope.

Fixpoint fin_to_nat {n} (i : fin n) : nat :=
  match i with 0%fin => 0 | FS _ i => S (fin_to_nat i) end.
Coercion fin_to_nat : fin >-> nat.

Notation fin_of_nat := Fin.of_nat_lt.
Notation fin_rect2 := Fin.rect2.

Instance fin_dec {n} :  i j : fin n, Decision (i = j).
Proof.
 refine (fin_rect2
  (λ n (i j : fin n), { i = j } + { i  j })
  (λ _, left _)
  (λ _ _, right _)
  (λ _ _, right _)
  (λ _ _ _ H, cast_if H));
  abstract (f_equal; by auto using Fin.FS_inj).
Defined.

(** The inversion principle [fin_S_inv] is more convenient than its variant
[Fin.caseS] in the standard library, as we keep the parameter [n] fixed.
In the tactic [inv_fin i] to perform dependent case analysis on [i], we
therefore do not have to generalize over the index [n] and all assumptions
depending on it. Notice that contrary to [dependent destruction], which uses
the [JMeq_eq] axiom, the tactic [inv_fin] produces axiom free proofs.*)
Notation fin_0_inv := Fin.case0.

Definition fin_S_inv {n} (P : fin (S n)  Type)
  (H0 : P 0%fin) (HS :  i, P (FS i)) (i : fin (S n)) : P i.
Proof.
  revert P H0 HS.
  refine match i with 0%fin => λ _ H0 _, H0 | FS _ i => λ _ _ HS, HS i end.
Defined.

Ltac inv_fin i :=
  match type of i with
  | fin 0 =>
    revert dependent i; match goal with |-  i, @?P i => apply (fin_0_inv P) end
  | fin (S ?n) =>
    revert dependent i; match goal with |-  i, @?P i => apply (fin_S_inv P) end
  end.

72
Instance: Inj (=) (=) (@FS n).
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Proof. intros n i j. apply Fin.FS_inj. Qed.
74
Instance: Inj (=) (=) (@fin_to_nat n).
Robbert Krebbers's avatar
Robbert Krebbers committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
Proof.
  intros n i. induction i; intros j; inv_fin j; intros; f_equal'; auto with lia.
Qed.
Lemma fin_to_nat_lt {n} (i : fin n) : fin_to_nat i < n.
Proof. induction i; simpl; lia. Qed.
Lemma fin_to_of_nat n m (H : n < m) : fin_to_nat (Fin.of_nat_lt H) = n.
Proof.
  revert m H. induction n; intros [|?]; simpl; auto; intros; exfalso; lia.
Qed.

Fixpoint fin_enum (n : nat) : list (fin n) :=
  match n with 0 => [] | S n => 0%fin :: FS <$> fin_enum n end.
Program Instance fin_finite n : Finite (fin n) := {| enum := fin_enum n |}.
Next Obligation.
  intros n. induction n; simpl; constructor.
  * rewrite elem_of_list_fmap. by intros (?&?&?).
  * by apply (NoDup_fmap _).
Qed.
Next Obligation.
  intros n i. induction i as [|n i IH]; simpl;
    rewrite elem_of_cons, ?elem_of_list_fmap; eauto.
Qed.
Lemma fin_card n : card (fin n) = n.
Proof. unfold card; simpl. induction n; simpl; rewrite ?fmap_length; auto. Qed.

(** * Vectors *)
(** The type [vec n] represents lists of consisting of exactly [n] elements.
Whereas the standard library declares exactly the same notations for vectors as
used for lists, we use slightly different notations so it becomes easier to use
lists and vectors together. *)
Notation vec := Vector.t.
Notation vnil := Vector.nil.
Arguments vnil {_}.
Notation vcons := Vector.cons.
Notation vapp := Vector.append.
Arguments vcons {_} _ {_} _.

Infix ":::" := vcons (at level 60, right associativity) : vector_scope.
Notation "(:::)" := vcons (only parsing) : vector_scope.
Notation "( x :::)" := (vcons x) (only parsing) : vector_scope.
Notation "(::: v )" := (λ x, vcons x v) (only parsing) : vector_scope.
Notation "[# ] " := vnil : vector_scope.
Notation "[# x ] " := (vcons x vnil) : vector_scope.
Notation "[# x ; .. ; y ] " := (vcons x .. (vcons y vnil) ..) : vector_scope.
Infix "+++" := vapp (at level 60, right associativity) : vector_scope.
Notation "(+++)" := vapp (only parsing) : vector_scope.
Notation "( v +++)" := (vapp v) (only parsing) : vector_scope.
Notation "(+++ w )" := (λ v, vapp v w) (only parsing) : vector_scope.

(** Notice that we cannot define [Vector.nth] as an instance of our [Lookup]
type class, as it has a dependent type. *)
Arguments Vector.nth {_ _} !_ !_%fin /.
Infix "!!!" := Vector.nth (at level 20) : vector_scope.

(** The tactic [vec_double_ind v1 v2] performs double induction on [v1] and [v2]
provided that they have the same length. *)
Notation vec_rect2 := Vector.rect2.
Ltac vec_double_ind v1 v2 :=
  match type of v1 with
  | vec _ ?n =>
    repeat match goal with
    | H' : context [ n ] |- _ => var_neq v1 H'; var_neq v2 H'; revert H'
    end;
    revert n v1 v2;
    match goal with |-  n v1 v2, @?P n v1 v2 => apply (vec_rect2 P) end
  end.

Notation vcons_inj := VectorSpec.cons_inj.
Lemma vcons_inj_1 {A n} x y (v w : vec A n) : x ::: v = y ::: w  x = y.
Proof. apply vcons_inj. Qed.
Lemma vcons_inj_2 {A n} x y (v w : vec A n) : x ::: v = y ::: w  v = w.
Proof. apply vcons_inj. Qed.

Lemma vec_eq {A n} (v w : vec A n) : ( i, v !!! i = w !!! i)  v = w.
Proof.
  vec_double_ind v w; [done|]. intros n v w IH x y Hi. f_equal.
  * apply (Hi 0%fin).
  * apply IH. intros i. apply (Hi (FS i)).
Qed.

Instance vec_dec {A} {dec :  x y : A, Decision (x = y)} {n} :
   v w : vec A n, Decision (v = w).
Proof.
 refine (vec_rect2
  (λ n (v w : vec A n), { v = w } + { v  w })
  (left _)
  (λ _ _ _ H x y, cast_if_and (dec x y) H));
  f_equal; eauto using vcons_inj_1, vcons_inj_2.
Defined.

(** Similar to [fin], we provide an inversion principle that keeps the length
fixed. We define a tactic [inv_vec v] to perform case analysis on [v], using
this inversion principle. *)
Notation vec_0_inv := Vector.case0.
Definition vec_S_inv {A n} (P : vec A (S n)  Type)
  (Hcons :  x v, P (x ::: v)) v : P v.
Proof.
  revert P Hcons.
  refine match v with [#] => tt | x ::: v => λ P Hcons, Hcons x v end.
Defined.

Ltac inv_vec v :=
  match type of v with
  | vec _ 0 =>
    revert dependent v; match goal with |-  v, @?P v => apply (vec_0_inv P) end
  | vec _ (S ?n) =>
    revert dependent v; match goal with |-  v, @?P v => apply (vec_S_inv P) end
  end.

(** The following tactic performs case analysis on all hypotheses of the shape
[fin 0], [fin (S n)], [vec A 0] and [vec A (S n)] until no further case
analyses are possible. *)
Ltac inv_all_vec_fin := block_goal;
  repeat match goal with
  | v : vec _ _ |- _ => inv_vec v; intros
  | i : fin _ |- _ => inv_fin i; intros
  end; unblock_goal.

(** We define a coercion from [vec] to [list] and show that it preserves the
operations on vectors. We also define a function to go in the other way, but
do not define it as a coercion, as it would otherwise introduce ambiguity. *)
Fixpoint vec_to_list {A n} (v : vec A n) : list A :=
  match v with [#] => [] | x ::: v => x :: vec_to_list v end.
Coercion vec_to_list : vec >-> list.
Notation list_to_vec := Vector.of_list.

Lemma vec_to_list_cons {A n} x (v : vec A n) :
  vec_to_list (x ::: v) = x :: vec_to_list v.
Proof. done. Qed.
Lemma vec_to_list_app {A n m} (v : vec A n) (w : vec A m) :
  vec_to_list (v +++ w) = vec_to_list v ++ vec_to_list w.
Proof. by induction v; f_equal'. Qed.
Lemma vec_to_list_of_list {A} (l : list A): vec_to_list (list_to_vec l) = l.
Proof. by induction l; f_equal'. Qed.
Lemma vec_to_list_length {A n} (v : vec A n) : length (vec_to_list v) = n.
Proof. induction v; simpl; by f_equal. Qed.
Lemma vec_to_list_same_length {A B n} (v : vec A n) (w : vec B n) :
  length v = length w.
Proof. by rewrite !vec_to_list_length. Qed.
Lemma vec_to_list_inj1 {A n m} (v : vec A n) (w : vec A m) :
  vec_to_list v = vec_to_list w  n = m.
Proof.
  revert m w. induction v; intros ? [|???] ?;
    simplify_equality'; f_equal; eauto.
Qed.
Lemma vec_to_list_inj2 {A n} (v : vec A n) (w : vec A n) :
  vec_to_list v = vec_to_list w  v = w.
Proof.
  revert w. induction v; intros w; inv_vec w; intros;
    simplify_equality'; f_equal; eauto.
Qed.
Lemma vlookup_middle {A n m} (v : vec A n) (w : vec A m) x :
   i : fin (n + S m), x = (v +++ x ::: w) !!! i.
Proof.
  induction v; simpl; [by eexists 0%fin|].
  destruct IHv as [i ?]. by exists (FS i).
Qed.
Lemma vec_to_list_lookup_middle {A n} (v : vec A n) (l k : list A) x :
  vec_to_list v = l ++ x :: k 
     i : fin n, l = take i v  x = v !!! i  k = drop (S i) v.
Proof.
  intros H.
  rewrite <-(vec_to_list_of_list l), <-(vec_to_list_of_list k) in H.
  rewrite <-vec_to_list_cons, <-vec_to_list_app in H.
  pose proof (vec_to_list_inj1 _ _ H); subst.
  apply vec_to_list_inj2 in H; subst. induction l. simpl.
  * eexists 0%fin. simpl. by rewrite vec_to_list_of_list.
  * destruct IHl as [i ?]. exists (FS i). simpl. intuition congruence.
Qed.
Lemma vec_to_list_drop_lookup {A n} (v : vec A n) (i : fin n) :
  drop i v = v !!! i :: drop (S i) v.
Proof. induction i; inv_vec v; simpl; intros; [done | by rewrite IHi]. Qed.
Lemma vec_to_list_take_drop_lookup {A n} (v : vec A n) (i : fin n) :
  vec_to_list v = take i v ++ v !!! i :: drop (S i) v.
Proof. rewrite <-(take_drop i v) at 1. by rewrite vec_to_list_drop_lookup. Qed.

Lemma elem_of_vlookup {A n} (v : vec A n) x :
  x  vec_to_list v   i, v !!! i = x.
Proof.
  split.
  * induction v; simpl; [by rewrite elem_of_nil |].
    inversion 1; subst; [by eexists 0%fin|].
    destruct IHv as [i ?]; trivial. by exists (FS i).
  * intros [i ?]; subst. induction v as [|??? IH]; inv_fin i; [by left|].
    right; apply IH.
Qed.
Lemma Forall_vlookup {A} (P : A  Prop) {n} (v : vec A n) :
  Forall P (vec_to_list v)   i, P (v !!! i).
Proof. rewrite Forall_forall. setoid_rewrite elem_of_vlookup. naive_solver. Qed.
Lemma Forall_vlookup_1 {A} (P : A  Prop) {n} (v : vec A n) i :
  Forall P (vec_to_list v)  P (v !!! i).
Proof. by rewrite Forall_vlookup. Qed.
Lemma Forall_vlookup_2 {A} (P : A  Prop) {n} (v : vec A n) :
  ( i, P (v !!! i))  Forall P (vec_to_list v).
Proof. by rewrite Forall_vlookup. Qed.
Lemma Exists_vlookup {A} (P : A  Prop) {n} (v : vec A n) :
  Exists P (vec_to_list v)   i, P (v !!! i).
Proof. rewrite Exists_exists. setoid_rewrite elem_of_vlookup. naive_solver. Qed.
Lemma Forall2_vlookup {A B} (P : A  B  Prop) {n}
    (v1 : vec A n) (v2 : vec B n) :
  Forall2 P (vec_to_list v1) (vec_to_list v2)   i, P (v1 !!! i) (v2 !!! i).
Proof.
  split.
  * vec_double_ind v1 v2; [intros _ i; inv_fin i |].
    intros n v1 v2 IH a b; simpl. inversion_clear 1.
    intros i. inv_fin i; simpl; auto.
  * vec_double_ind v1 v2; [constructor|].
    intros ??? IH ?? H. constructor. apply (H 0%fin). apply IH, (λ i, H (FS i)).
Qed.

(** The function [vmap f v] applies a function [f] element wise to [v]. *)
Notation vmap := Vector.map.

Lemma vlookup_map `(f : A  B) {n} (v : vec A n) i :
  vmap f v !!! i = f (v !!! i).
Proof. by apply Vector.nth_map. Qed.
Lemma vec_to_list_map `(f : A  B) {n} (v : vec A n) :
  vec_to_list (vmap f v) = f <$> vec_to_list v.
Proof. induction v; simpl. done. by rewrite IHv. Qed.

(** The function [vzip_with f v w] combines the vectors [v] and [w] element
wise using the function [f]. *)
Notation vzip_with := Vector.map2.

Lemma vlookup_zip_with `(f : A  B  C) {n} (v1 : vec A n) (v2 : vec B n) i :
  vzip_with f v1 v2 !!! i = f (v1 !!! i) (v2 !!! i).
Proof. by apply Vector.nth_map2. Qed.
Lemma vec_to_list_zip_with `(f : A  B  C) {n} (v1 : vec A n) (v2 : vec B n) :
  vec_to_list (vzip_with f v1 v2) =
    zip_with f (vec_to_list v1) (vec_to_list v2).
Proof.
  revert v2. induction v1; intros v2; inv_vec v2; intros; simpl; [done|].
  by rewrite IHv1.
Qed.

(** Similar to vlookup, we cannot define [vinsert] as an instance of the
[Insert] type class, as it has a dependent type. *)
Fixpoint vinsert {A n} (i : fin n) (x : A) : vec A n  vec A n :=
  match i with
  | 0%fin => vec_S_inv _ (λ _ v, x ::: v)
  | FS _ i => vec_S_inv _ (λ y v, y ::: vinsert i x v)
  end.

Lemma vec_to_list_insert {A n} i x (v : vec A n) :
  vec_to_list (vinsert i x v) = insert (fin_to_nat i) x (vec_to_list v).
Proof. induction v; inv_fin i. done. simpl. intros. by rewrite IHv. Qed.
Lemma vlookup_insert {A n} i x (v : vec A n) : vinsert i x v !!! i = x.
Proof. by induction i; inv_vec v. Qed.
Lemma vlookup_insert_ne {A n} i j x (v : vec A n) :
  i  j  vinsert i x v !!! j = v !!! j.
Proof.
  induction i; inv_fin j; inv_vec v; simpl; try done.
  intros. apply IHi. congruence.
Qed.
Lemma vlookup_insert_self {A n} i (v : vec A n) : vinsert i (v !!! i) v = v.
Proof. by induction v; inv_fin i; intros; f_equal'. Qed.