option.v 7.77 KB
 Robbert Krebbers committed Feb 04, 2016 1 ``````Require Export algebra.cmra. `````` Ralf Jung committed Feb 05, 2016 2 ``````Require Import algebra.functor. `````` Robbert Krebbers committed Dec 15, 2015 3 4 `````` (* COFE *) `````` Robbert Krebbers committed Jan 14, 2016 5 6 7 ``````Section cofe. Context {A : cofeT}. Inductive option_dist : Dist (option A) := `````` Ralf Jung committed Feb 10, 2016 8 9 `````` | Some_dist n x y : x ≡{n}≡ y → Some x ≡{n}≡ Some y | None_dist n : None ≡{n}≡ None. `````` Robbert Krebbers committed Dec 15, 2015 10 ``````Existing Instance option_dist. `````` Robbert Krebbers committed Jan 14, 2016 11 ``````Program Definition option_chain `````` Robbert Krebbers committed Dec 15, 2015 12 13 14 `````` (c : chain (option A)) (x : A) (H : c 1 = Some x) : chain A := {| chain_car n := from_option x (c n) |}. Next Obligation. `````` Robbert Krebbers committed Feb 10, 2016 15 16 17 `````` intros c x ? n [|i] ?; [omega|]; simpl. destruct (c 1) eqn:?; simplify_equality'. by feed inversion (chain_cauchy c n (S i)). `````` Robbert Krebbers committed Dec 15, 2015 18 ``````Qed. `````` Robbert Krebbers committed Jan 14, 2016 19 ``````Instance option_compl : Compl (option A) := λ c, `````` Robbert Krebbers committed Dec 15, 2015 20 21 22 `````` match Some_dec (c 1) with | inleft (exist x H) => Some (compl (option_chain c x H)) | inright _ => None end. `````` Robbert Krebbers committed Jan 14, 2016 23 ``````Definition option_cofe_mixin : CofeMixin (option A). `````` Robbert Krebbers committed Dec 15, 2015 24 25 26 27 28 29 30 31 32 33 34 35 ``````Proof. split. * intros mx my; split; [by destruct 1; constructor; apply equiv_dist|]. intros Hxy; feed inversion (Hxy 1); subst; constructor; apply equiv_dist. by intros n; feed inversion (Hxy n). * intros n; split. + by intros [x|]; constructor. + by destruct 1; constructor. + destruct 1; inversion_clear 1; constructor; etransitivity; eauto. * by inversion_clear 1; constructor; apply dist_S. * intros c n; unfold compl, option_compl. destruct (Some_dec (c 1)) as [[x Hx]|]. `````` Robbert Krebbers committed Feb 10, 2016 36 37 `````` { assert (is_Some (c (S n))) as [y Hy]. { feed inversion (chain_cauchy c 0 (S n)); eauto with lia congruence. } `````` Robbert Krebbers committed Dec 15, 2015 38 `````` rewrite Hy; constructor. `````` Robbert Krebbers committed Feb 10, 2016 39 40 41 `````` by rewrite (conv_compl (option_chain c x Hx) n) /= Hy. } feed inversion (chain_cauchy c 0 (S n)); eauto with lia congruence. constructor. `````` Robbert Krebbers committed Dec 15, 2015 42 ``````Qed. `````` Robbert Krebbers committed Jan 14, 2016 43 44 ``````Canonical Structure optionC := CofeT option_cofe_mixin. Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A). `````` Robbert Krebbers committed Dec 15, 2015 45 ``````Proof. by constructor. Qed. `````` Robbert Krebbers committed Feb 10, 2016 46 ``````Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A). `````` Robbert Krebbers committed Jan 16, 2016 47 ``````Proof. inversion_clear 1; split; eauto. Qed. `````` Robbert Krebbers committed Feb 11, 2016 48 ``````Global Instance Some_dist_inj : Inj (dist n) (dist n) (@Some A). `````` Robbert Krebbers committed Jan 16, 2016 49 ``````Proof. by inversion_clear 1. Qed. `````` Robbert Krebbers committed Jan 14, 2016 50 ``````Global Instance None_timeless : Timeless (@None A). `````` Robbert Krebbers committed Dec 15, 2015 51 ``````Proof. inversion_clear 1; constructor. Qed. `````` Robbert Krebbers committed Jan 14, 2016 52 ``````Global Instance Some_timeless x : Timeless x → Timeless (Some x). `````` Robbert Krebbers committed Dec 15, 2015 53 ``````Proof. by intros ?; inversion_clear 1; constructor; apply timeless. Qed. `````` Robbert Krebbers committed Jan 14, 2016 54 55 56 57 ``````End cofe. Arguments optionC : clear implicits. `````` Robbert Krebbers committed Dec 15, 2015 58 ``````(* CMRA *) `````` Robbert Krebbers committed Jan 14, 2016 59 60 61 62 ``````Section cmra. Context {A : cmraT}. Instance option_validN : ValidN (option A) := λ n mx, `````` Robbert Krebbers committed Dec 15, 2015 63 `````` match mx with Some x => ✓{n} x | None => True end. `````` Robbert Krebbers committed Feb 04, 2016 64 ``````Global Instance option_empty : Empty (option A) := None. `````` Robbert Krebbers committed Jan 14, 2016 65 66 67 ``````Instance option_unit : Unit (option A) := fmap unit. Instance option_op : Op (option A) := union_with (λ x y, Some (x ⋅ y)). Instance option_minus : Minus (option A) := `````` Robbert Krebbers committed Dec 15, 2015 68 `````` difference_with (λ x y, Some (x ⩪ y)). `````` Robbert Krebbers committed Jan 14, 2016 69 ``````Lemma option_includedN n (mx my : option A) : `````` Robbert Krebbers committed Feb 10, 2016 70 `````` mx ≼{n} my ↔ mx = None ∨ ∃ x y, mx = Some x ∧ my = Some y ∧ x ≼{n} y. `````` Robbert Krebbers committed Dec 15, 2015 71 72 ``````Proof. split. `````` Robbert Krebbers committed Feb 10, 2016 73 `````` * intros [mz Hmz]. `````` Robbert Krebbers committed Dec 15, 2015 74 75 76 `````` destruct mx as [x|]; [right|by left]. destruct my as [y|]; [exists x, y|destruct mz; inversion_clear Hmz]. destruct mz as [z|]; inversion_clear Hmz; split_ands; auto; `````` Robbert Krebbers committed Feb 01, 2016 77 `````` cofe_subst; eauto using cmra_includedN_l. `````` Robbert Krebbers committed Feb 10, 2016 78 `````` * intros [->|(x&y&->&->&z&Hz)]; try (by exists my; destruct my; constructor). `````` Robbert Krebbers committed Dec 15, 2015 79 80 `````` by exists (Some z); constructor. Qed. `````` Robbert Krebbers committed Jan 16, 2016 81 82 83 84 ``````Lemma None_includedN n (mx : option A) : None ≼{n} mx. Proof. rewrite option_includedN; auto. Qed. Lemma Some_Some_includedN n (x y : A) : x ≼{n} y → Some x ≼{n} Some y. Proof. rewrite option_includedN; eauto 10. Qed. `````` 85 ``````Definition Some_op a b : Some (a ⋅ b) = Some a ⋅ Some b := eq_refl. `````` Robbert Krebbers committed Jan 16, 2016 86 `````` `````` Robbert Krebbers committed Jan 14, 2016 87 ``````Definition option_cmra_mixin : CMRAMixin (option A). `````` Robbert Krebbers committed Dec 15, 2015 88 89 ``````Proof. split. `````` Robbert Krebbers committed Feb 11, 2016 90 91 92 93 `````` * by intros n [x|]; destruct 1; constructor; cofe_subst. * by destruct 1; constructor; cofe_subst. * by destruct 1; rewrite /validN /option_validN //=; cofe_subst. * by destruct 1; inversion_clear 1; constructor; cofe_subst. `````` Robbert Krebbers committed Feb 01, 2016 94 `````` * intros n [x|]; unfold validN, option_validN; eauto using cmra_validN_S. `````` Robbert Krebbers committed Feb 11, 2016 95 96 `````` * intros [x|] [y|] [z|]; constructor; rewrite ?assoc; auto. * intros [x|] [y|]; constructor; rewrite 1?comm; auto. `````` Robbert Krebbers committed Feb 01, 2016 97 `````` * by intros [x|]; constructor; rewrite cmra_unit_l. `````` Robbert Krebbers committed Feb 11, 2016 98 `````` * by intros [x|]; constructor; rewrite cmra_unit_idemp. `````` Robbert Krebbers committed Feb 10, 2016 99 100 `````` * intros n mx my; rewrite !option_includedN;intros [->|(x&y&->&->&?)]; auto. right; exists (unit x), (unit y); eauto using cmra_unit_preservingN. `````` Robbert Krebbers committed Feb 01, 2016 101 102 `````` * intros n [x|] [y|]; rewrite /validN /option_validN /=; eauto using cmra_validN_op_l. `````` Robbert Krebbers committed Dec 15, 2015 103 `````` * intros n mx my; rewrite option_includedN. `````` Robbert Krebbers committed Feb 10, 2016 104 `````` intros [->|(x&y&->&->&?)]; [by destruct my|]. `````` Robbert Krebbers committed Dec 15, 2015 105 106 `````` by constructor; apply cmra_op_minus. Qed. `````` Robbert Krebbers committed Jan 14, 2016 107 ``````Definition option_cmra_extend_mixin : CMRAExtendMixin (option A). `````` Robbert Krebbers committed Dec 15, 2015 108 ``````Proof. `````` Robbert Krebbers committed Feb 10, 2016 109 `````` intros n mx my1 my2. `````` Robbert Krebbers committed Dec 15, 2015 110 111 112 113 114 115 116 117 118 `````` destruct mx as [x|], my1 as [y1|], my2 as [y2|]; intros Hx Hx'; try (by exfalso; inversion Hx'; auto). * destruct (cmra_extend_op n x y1 y2) as ([z1 z2]&?&?&?); auto. { by inversion_clear Hx'. } by exists (Some z1, Some z2); repeat constructor. * by exists (Some x,None); inversion Hx'; repeat constructor. * by exists (None,Some x); inversion Hx'; repeat constructor. * exists (None,None); repeat constructor. Qed. `````` Robbert Krebbers committed Jan 14, 2016 119 120 ``````Canonical Structure optionRA := CMRAT option_cofe_mixin option_cmra_mixin option_cmra_extend_mixin. `````` Robbert Krebbers committed Feb 04, 2016 121 122 ``````Global Instance option_cmra_identity : CMRAIdentity optionRA. Proof. split. done. by intros []. by inversion_clear 1. Qed. `````` Robbert Krebbers committed Jan 14, 2016 123 `````` `````` Robbert Krebbers committed Feb 02, 2016 124 125 126 127 ``````Lemma op_is_Some mx my : is_Some (mx ⋅ my) ↔ is_Some mx ∨ is_Some my. Proof. destruct mx, my; rewrite /op /option_op /= -!not_eq_None_Some; naive_solver. Qed. `````` Ralf Jung committed Feb 10, 2016 128 ``````Lemma option_op_positive_dist_l n mx my : mx ⋅ my ≡{n}≡ None → mx ≡{n}≡ None. `````` Robbert Krebbers committed Feb 02, 2016 129 ``````Proof. by destruct mx, my; inversion_clear 1. Qed. `````` Ralf Jung committed Feb 10, 2016 130 ``````Lemma option_op_positive_dist_r n mx my : mx ⋅ my ≡{n}≡ None → my ≡{n}≡ None. `````` Robbert Krebbers committed Feb 02, 2016 131 132 133 ``````Proof. by destruct mx, my; inversion_clear 1. Qed. Lemma option_updateP (P : A → Prop) (Q : option A → Prop) x : `````` Ralf Jung committed Feb 03, 2016 134 `````` x ~~>: P → (∀ y, P y → Q (Some y)) → Some x ~~>: Q. `````` Robbert Krebbers committed Feb 02, 2016 135 136 137 138 139 140 ``````Proof. intros Hx Hy [y|] n ?. { destruct (Hx y n) as (y'&?&?); auto. exists (Some y'); auto. } destruct (Hx (unit x) n) as (y'&?&?); rewrite ?cmra_unit_r; auto. by exists (Some y'); split; [auto|apply cmra_validN_op_l with (unit x)]. Qed. `````` Robbert Krebbers committed Feb 02, 2016 141 ``````Lemma option_updateP' (P : A → Prop) x : `````` Ralf Jung committed Feb 03, 2016 142 `````` x ~~>: P → Some x ~~>: λ y, default False y P. `````` Robbert Krebbers committed Feb 02, 2016 143 ``````Proof. eauto using option_updateP. Qed. `````` Ralf Jung committed Feb 03, 2016 144 ``````Lemma option_update x y : x ~~> y → Some x ~~> Some y. `````` Robbert Krebbers committed Jan 16, 2016 145 ``````Proof. `````` Robbert Krebbers committed Feb 02, 2016 146 `````` rewrite !cmra_update_updateP; eauto using option_updateP with congruence. `````` Robbert Krebbers committed Jan 16, 2016 147 ``````Qed. `````` Robbert Krebbers committed Feb 08, 2016 148 149 150 151 152 ``````Lemma option_update_None `{Empty A, !CMRAIdentity A} : ∅ ~~> Some ∅. Proof. intros [x|] n ?; rewrite /op /cmra_op /validN /cmra_validN /= ?left_id; auto using cmra_empty_valid. Qed. `````` Robbert Krebbers committed Jan 14, 2016 153 154 155 ``````End cmra. Arguments optionRA : clear implicits. `````` Robbert Krebbers committed Feb 04, 2016 156 157 158 159 ``````(** Functor *) Instance option_fmap_ne {A B : cofeT} (f : A → B) n: Proper (dist n ==> dist n) f → Proper (dist n==>dist n) (fmap (M:=option) f). Proof. by intros Hf; destruct 1; constructor; apply Hf. Qed. `````` Robbert Krebbers committed Jan 14, 2016 160 161 ``````Instance option_fmap_cmra_monotone {A B : cmraT} (f: A → B) `{!CMRAMonotone f} : CMRAMonotone (fmap f : option A → option B). `````` Robbert Krebbers committed Dec 15, 2015 162 163 164 ``````Proof. split. * intros n mx my; rewrite !option_includedN. `````` Robbert Krebbers committed Feb 10, 2016 165 `````` intros [->|(x&y&->&->&?)]; simpl; eauto 10 using @includedN_preserving. `````` Robbert Krebbers committed Jan 14, 2016 166 167 `````` * by intros n [x|] ?; rewrite /cmra_validN /=; try apply validN_preserving. Qed. `````` Robbert Krebbers committed Feb 04, 2016 168 169 170 171 ``````Definition optionC_map {A B} (f : A -n> B) : optionC A -n> optionC B := CofeMor (fmap f : optionC A → optionC B). Instance optionC_map_ne A B n : Proper (dist n ==> dist n) (@optionC_map A B). Proof. by intros f f' Hf []; constructor; apply Hf. Qed. `````` Ralf Jung committed Feb 05, 2016 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 `````` Program Definition optionF (Σ : iFunctor) : iFunctor := {| ifunctor_car := optionRA ∘ Σ; ifunctor_map A B := optionC_map ∘ ifunctor_map Σ |}. Next Obligation. by intros Σ A B n f g Hfg; apply optionC_map_ne, ifunctor_map_ne. Qed. Next Obligation. intros Σ A x. rewrite /= -{2}(option_fmap_id x). apply option_fmap_setoid_ext=>y; apply ifunctor_map_id. Qed. Next Obligation. intros Σ A B C f g x. rewrite /= -option_fmap_compose. apply option_fmap_setoid_ext=>y; apply ifunctor_map_compose. Qed.``````