orders.v 24.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects common properties of pre-orders and semi lattices. This
theory will mainly be used for the theory on collections and finite maps. *)
5
From Coq Require Export Sorted.
6
From prelude Require Export tactics list.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10 11 12 13 14 15 16 17 18 19

(** * Arbitrary pre-, parial and total orders *)
(** Properties about arbitrary pre-, partial, and total orders. We do not use
the relation [⊆] because we often have multiple orders on the same structure *)
Section orders.
  Context {A} {R : relation A}.
  Implicit Types X Y : A.
  Infix "⊆" := R.
  Notation "X ⊈ Y" := (¬X  Y).
  Infix "⊂" := (strict R).

  Lemma reflexive_eq `{!Reflexive R} X Y : X = Y  X  Y.
  Proof. by intros <-. Qed.
20 21
  Lemma anti_symm_iff `{!PartialOrder R} X Y : X = Y  R X Y  R Y X.
  Proof. split. by intros ->. by intros [??]; apply (anti_symm _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24 25 26 27 28 29 30 31
  Lemma strict_spec X Y : X  Y  X  Y  Y  X.
  Proof. done. Qed.
  Lemma strict_include X Y : X  Y  X  Y.
  Proof. by intros [? _]. Qed.
  Lemma strict_ne X Y : X  Y  X  Y.
  Proof. by intros [??] <-. Qed.
  Lemma strict_ne_sym X Y : X  Y  Y  X.
  Proof. by intros [??] <-. Qed.
  Lemma strict_transitive_l `{!Transitive R} X Y Z : X  Y  Y  Z  X  Z.
  Proof.
32 33
    intros [? HXY] ?. split; [by trans Y|].
    contradict HXY. by trans Z.
Robbert Krebbers's avatar
Robbert Krebbers committed
34 35 36
  Qed.
  Lemma strict_transitive_r `{!Transitive R} X Y Z : X  Y  Y  Z  X  Z.
  Proof.
37 38
    intros ? [? HYZ]. split; [by trans Y|].
    contradict HYZ. by trans X.
Robbert Krebbers's avatar
Robbert Krebbers committed
39 40 41 42 43 44 45 46 47 48
  Qed.
  Global Instance: Irreflexive (strict R).
  Proof. firstorder. Qed.
  Global Instance: Transitive R  StrictOrder (strict R).
  Proof.
    split; try apply _.
    eauto using strict_transitive_r, strict_include.
  Qed.
  Global Instance preorder_subset_dec_slow `{ X Y, Decision (X  Y)}
    (X Y : A) : Decision (X  Y) | 100 := _.
49
  Lemma strict_spec_alt `{!AntiSymm (=) R} X Y : X  Y  X  Y  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
  Proof.
    split.
52 53
    - intros [? HYX]. split. done. by intros <-.
    - intros [? HXY]. split. done. by contradict HXY; apply (anti_symm R).
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55 56 57 58
  Qed.
  Lemma po_eq_dec `{!PartialOrder R,  X Y, Decision (X  Y)} (X Y : A) :
    Decision (X = Y).
  Proof.
    refine (cast_if_and (decide (X  Y)) (decide (Y  X)));
59
     abstract (rewrite anti_symm_iff; tauto).
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  Defined.
  Lemma total_not `{!Total R} X Y : X  Y  Y  X.
  Proof. intros. destruct (total R X Y); tauto. Qed.
  Lemma total_not_strict `{!Total R} X Y : X  Y  Y  X.
  Proof. red; auto using total_not. Qed.
  Global Instance trichotomy_total
    `{!Trichotomy (strict R), !Reflexive R} : Total R.
  Proof.
    intros X Y.
    destruct (trichotomy (strict R) X Y) as [[??]|[<-|[??]]]; intuition.
  Qed.
End orders.

Section strict_orders.
  Context {A} {R : relation A}.
  Implicit Types X Y : A.
  Infix "⊂" := R.

  Lemma irreflexive_eq `{!Irreflexive R} X Y : X = Y  ¬X  Y.
  Proof. intros ->. apply (irreflexivity R). Qed.
80
  Lemma strict_anti_symm `{!StrictOrder R} X Y :
Robbert Krebbers's avatar
Robbert Krebbers committed
81
    X  Y  Y  X  False.
82
  Proof. intros. apply (irreflexivity R X). by trans Y. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84 85 86 87
  Global Instance trichotomyT_dec `{!TrichotomyT R, !StrictOrder R} X Y :
      Decision (X  Y) :=
    match trichotomyT R X Y with
    | inleft (left H) => left H
    | inleft (right H) => right (irreflexive_eq _ _ H)
88
    | inright H => right (strict_anti_symm _ _ H)
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90 91 92 93 94 95
    end.
  Global Instance trichotomyT_trichotomy `{!TrichotomyT R} : Trichotomy R.
  Proof. intros X Y. destruct (trichotomyT R X Y) as [[|]|]; tauto. Qed.
End strict_orders.

Ltac simplify_order := repeat
  match goal with
96
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
97 98 99 100
  | H : ?R ?x ?x |- _ => by destruct (irreflexivity _ _ H)
  | H1 : ?R ?x ?y |- _ =>
    match goal with
    | H2 : R y x |- _ =>
101
      assert (x = y) by (by apply (anti_symm R)); clear H1 H2
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103
    | H2 : R y ?z |- _ =>
      unless (R x z) by done;
104
      assert (R x z) by (by trans y)
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    end
  end.

(** * Sorting *)
(** Merge sort. Adapted from the implementation of Hugo Herbelin in the Coq
standard library, but without using the module system. *)
Section merge_sort.
  Context  {A} (R : relation A) `{ x y, Decision (R x y)}.

  Fixpoint list_merge (l1 : list A) : list A  list A :=
    fix list_merge_aux l2 :=
    match l1, l2 with
    | [], _ => l2
    | _, [] => l1
    | x1 :: l1, x2 :: l2 =>
       if decide_rel R x1 x2 then x1 :: list_merge l1 (x2 :: l2)
       else x2 :: list_merge_aux l2
    end.
  Global Arguments list_merge !_ !_ /.

  Local Notation stack := (list (option (list A))).
  Fixpoint merge_list_to_stack (st : stack) (l : list A) : stack :=
    match st with
    | [] => [Some l]
    | None :: st => Some l :: st
    | Some l' :: st => None :: merge_list_to_stack st (list_merge l' l)
    end.
  Fixpoint merge_stack (st : stack) : list A :=
    match st with
    | [] => []
    | None :: st => merge_stack st
    | Some l :: st => list_merge l (merge_stack st)
    end.
  Fixpoint merge_sort_aux (st : stack) (l : list A) : list A :=
    match l with
    | [] => merge_stack st
    | x :: l => merge_sort_aux (merge_list_to_stack st [x]) l
    end.
  Definition merge_sort : list A  list A := merge_sort_aux [].
End merge_sort.

(** ** Properties of the [Sorted] and [StronglySorted] predicate *)
Section sorted.
  Context {A} (R : relation A).

  Lemma Sorted_StronglySorted `{!Transitive R} l :
    Sorted R l  StronglySorted R l.
  Proof. by apply Sorted.Sorted_StronglySorted. Qed.
153
  Lemma StronglySorted_unique `{!AntiSymm (=) R} l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156 157 158 159 160 161 162 163
    StronglySorted R l1  StronglySorted R l2  l1  l2  l1 = l2.
  Proof.
    intros Hl1; revert l2. induction Hl1 as [|x1 l1 ? IH Hx1]; intros l2 Hl2 E.
    { symmetry. by apply Permutation_nil. }
    destruct Hl2 as [|x2 l2 ? Hx2].
    { by apply Permutation_nil in E. }
    assert (x1 = x2); subst.
    { rewrite Forall_forall in Hx1, Hx2.
      assert (x2  x1 :: l1) as Hx2' by (by rewrite E; left).
      assert (x1  x2 :: l2) as Hx1' by (by rewrite <-E; left).
164
      inversion Hx1'; inversion Hx2'; simplify_eq; auto. }
165
    f_equal. by apply IH, (inj (x2 ::)).
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  Qed.
167
  Lemma Sorted_unique `{!Transitive R, !AntiSymm (=) R} l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    Sorted R l1  Sorted R l2  l1  l2  l1 = l2.
  Proof. auto using StronglySorted_unique, Sorted_StronglySorted. Qed.

  Global Instance HdRel_dec x `{ y, Decision (R x y)} l :
    Decision (HdRel R x l).
  Proof.
   refine
    match l with
    | [] => left _
    | y :: l => cast_if (decide (R x y))
    end; abstract first [by constructor | by inversion 1].
  Defined.
  Global Instance Sorted_dec `{ x y, Decision (R x y)} :  l,
    Decision (Sorted R l).
  Proof.
   refine
    (fix go l :=
    match l return Decision (Sorted R l) with
    | [] => left _
    | x :: l => cast_if_and (decide (HdRel R x l)) (go l)
    end); clear go; abstract first [by constructor | by inversion 1].
  Defined.
  Global Instance StronglySorted_dec `{ x y, Decision (R x y)} :  l,
    Decision (StronglySorted R l).
  Proof.
   refine
    (fix go l :=
    match l return Decision (StronglySorted R l) with
    | [] => left _
    | x :: l => cast_if_and (decide (Forall (R x) l)) (go l)
    end); clear go; abstract first [by constructor | by inversion 1].
  Defined.

  Context {B} (f : A  B).
  Lemma HdRel_fmap (R1 : relation A) (R2 : relation B) x l :
    ( y, R1 x y  R2 (f x) (f y))  HdRel R1 x l  HdRel R2 (f x) (f <$> l).
  Proof. destruct 2; constructor; auto. Qed.
  Lemma Sorted_fmap (R1 : relation A) (R2 : relation B) l :
    ( x y, R1 x y  R2 (f x) (f y))  Sorted R1 l  Sorted R2 (f <$> l).
  Proof. induction 2; simpl; constructor; eauto using HdRel_fmap. Qed.
  Lemma StronglySorted_fmap (R1 : relation A) (R2 : relation B) l :
    ( x y, R1 x y  R2 (f x) (f y)) 
    StronglySorted R1 l  StronglySorted R2 (f <$> l).
  Proof.
    induction 2; csimpl; constructor;
      rewrite ?Forall_fmap; eauto using Forall_impl.
  Qed.
End sorted.

(** ** Correctness of merge sort *)
Section merge_sort_correct.
  Context  {A} (R : relation A) `{ x y, Decision (R x y)} `{!Total R}.

  Lemma list_merge_cons x1 x2 l1 l2 :
    list_merge R (x1 :: l1) (x2 :: l2) =
      if decide (R x1 x2) then x1 :: list_merge R l1 (x2 :: l2)
      else x2 :: list_merge R (x1 :: l1) l2.
  Proof. done. Qed.
  Lemma HdRel_list_merge x l1 l2 :
    HdRel R x l1  HdRel R x l2  HdRel R x (list_merge R l1 l2).
  Proof.
    destruct 1 as [|x1 l1 IH1], 1 as [|x2 l2 IH2];
      rewrite ?list_merge_cons; simpl; repeat case_decide; auto.
  Qed.
  Lemma Sorted_list_merge l1 l2 :
    Sorted R l1  Sorted R l2  Sorted R (list_merge R l1 l2).
  Proof.
    intros Hl1. revert l2. induction Hl1 as [|x1 l1 IH1];
      induction 1 as [|x2 l2 IH2]; rewrite ?list_merge_cons; simpl;
      repeat case_decide;
      constructor; eauto using HdRel_list_merge, HdRel_cons, total_not.
  Qed.
  Lemma merge_Permutation l1 l2 : list_merge R l1 l2  l1 ++ l2.
  Proof.
    revert l2. induction l1 as [|x1 l1 IH1]; intros l2;
      induction l2 as [|x2 l2 IH2]; rewrite ?list_merge_cons; simpl;
      repeat case_decide; auto.
245 246
    - by rewrite (right_id_L [] (++)).
    - by rewrite IH2, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  Qed.

  Local Notation stack := (list (option (list A))).
  Inductive merge_stack_Sorted : stack  Prop :=
    | merge_stack_Sorted_nil : merge_stack_Sorted []
    | merge_stack_Sorted_cons_None st :
       merge_stack_Sorted st  merge_stack_Sorted (None :: st)
    | merge_stack_Sorted_cons_Some l st :
       Sorted R l  merge_stack_Sorted st  merge_stack_Sorted (Some l :: st).
  Fixpoint merge_stack_flatten (st : stack) : list A :=
    match st with
    | [] => []
    | None :: st => merge_stack_flatten st
    | Some l :: st => l ++ merge_stack_flatten st
    end.

  Lemma Sorted_merge_list_to_stack st l :
    merge_stack_Sorted st  Sorted R l 
    merge_stack_Sorted (merge_list_to_stack R st l).
  Proof.
    intros Hst. revert l.
    induction Hst; repeat constructor; naive_solver auto using Sorted_list_merge.
  Qed.
  Lemma merge_list_to_stack_Permutation st l :
    merge_stack_flatten (merge_list_to_stack R st l) 
      l ++ merge_stack_flatten st.
  Proof.
    revert l. induction st as [|[l'|] st IH]; intros l; simpl; auto.
275
    by rewrite IH, merge_Permutation, (assoc_L _), (comm (++) l).
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  Qed.
  Lemma Sorted_merge_stack st :
    merge_stack_Sorted st  Sorted R (merge_stack R st).
  Proof. induction 1; simpl; auto using Sorted_list_merge. Qed.
  Lemma merge_stack_Permutation st : merge_stack R st  merge_stack_flatten st.
  Proof.
    induction st as [|[] ? IH]; intros; simpl; auto.
    by rewrite merge_Permutation, IH.
  Qed.
  Lemma Sorted_merge_sort_aux st l :
    merge_stack_Sorted st  Sorted R (merge_sort_aux R st l).
  Proof.
    revert st. induction l; simpl;
      auto using Sorted_merge_stack, Sorted_merge_list_to_stack.
  Qed.
  Lemma merge_sort_aux_Permutation st l :
    merge_sort_aux R st l  merge_stack_flatten st ++ l.
  Proof.
    revert st. induction l as [|?? IH]; simpl; intros.
295 296
    - by rewrite (right_id_L [] (++)), merge_stack_Permutation.
    - rewrite IH, merge_list_to_stack_Permutation; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      by rewrite Permutation_middle.
  Qed.
  Lemma Sorted_merge_sort l : Sorted R (merge_sort R l).
  Proof. apply Sorted_merge_sort_aux. by constructor. Qed.
  Lemma merge_sort_Permutation l : merge_sort R l  l.
  Proof. unfold merge_sort. by rewrite merge_sort_aux_Permutation. Qed.
  Lemma StronglySorted_merge_sort `{!Transitive R} l :
    StronglySorted R (merge_sort R l).
  Proof. auto using Sorted_StronglySorted, Sorted_merge_sort. Qed.
End merge_sort_correct.

(** * Canonical pre and partial orders *)
(** We extend the canonical pre-order [⊆] to a partial order by defining setoid
equality as [λ X Y, X ⊆ Y ∧ Y ⊆ X]. We prove that this indeed gives rise to a
setoid. *)
312
Instance preorder_equiv `{SubsetEq A} : Equiv A | 20 := λ X Y, X  Y  Y  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
313 314 315 316 317 318 319

Section preorder.
  Context `{SubsetEq A, !PreOrder (@subseteq A _)}.

  Instance preorder_equivalence: @Equivalence A ().
  Proof.
    split.
320 321
    - done.
    - by intros ?? [??].
322
    - by intros X Y Z [??] [??]; split; trans Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  Qed.
324
  Global Instance: Proper (() ==> () ==> iff) (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326
  Proof.
    unfold equiv, preorder_equiv. intros X1 Y1 ? X2 Y2 ?. split; intro.
327 328
    - trans X1. tauto. trans X2; tauto.
    - trans Y1. tauto. trans Y2; tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  Qed.
330
  Lemma subset_spec (X Y : A) : X  Y  X  Y  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
331 332
  Proof.
    split.
333 334
    - intros [? HYX]. split. done. contradict HYX. by rewrite <-HYX.
    - intros [? HXY]. split. done. by contradict HXY.
Robbert Krebbers's avatar
Robbert Krebbers committed
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  Qed.

  Section dec.
    Context `{ X Y : A, Decision (X  Y)}.
    Global Instance preorder_equiv_dec_slow (X Y : A) :
      Decision (X  Y) | 100 := _.
    Lemma subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. rewrite subset_spec. destruct (decide (X  Y)); tauto. Qed.
    Lemma not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. rewrite subset_spec. destruct (decide (X  Y)); tauto. Qed.
  End dec.

  Section leibniz.
    Context `{!LeibnizEquiv A}.
    Lemma subset_spec_L X Y : X  Y  X  Y  X  Y.
    Proof. unfold_leibniz. apply subset_spec. Qed.
    Context `{ X Y : A, Decision (X  Y)}.
    Lemma subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply subseteq_inv. Qed.
    Lemma not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply not_subset_inv. Qed.
  End leibniz.
End preorder.

Typeclasses Opaque preorder_equiv.
Hint Extern 0 (@Equivalence _ ()) =>
  class_apply preorder_equivalence : typeclass_instances.

(** * Partial orders *)
Section partial_order.
  Context `{SubsetEq A, !PartialOrder (@subseteq A _)}.
  Global Instance: LeibnizEquiv A.
367
  Proof. intros ?? [??]; by apply (anti_symm ()). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370 371 372 373 374 375 376 377 378
End partial_order.

(** * Join semi lattices *)
(** General purpose theorems on join semi lattices. *)
Section join_semi_lattice.
  Context `{Empty A, JoinSemiLattice A, !EmptySpec A}.
  Implicit Types X Y : A.
  Implicit Types Xs Ys : list A.

  Hint Resolve subseteq_empty union_subseteq_l union_subseteq_r union_least.
  Lemma union_subseteq_l_transitive X1 X2 Y : X1  X2  X1  X2  Y.
379
  Proof. intros. trans X2; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  Lemma union_subseteq_r_transitive X1 X2 Y : X1  X2  X1  Y  X2.
381
  Proof. intros. trans X2; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384 385 386 387 388 389 390
  Hint Resolve union_subseteq_l_transitive union_subseteq_r_transitive.
  Lemma union_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. auto. Qed.
  Lemma union_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. auto. Qed.
  Lemma union_preserving X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
  Proof. auto. Qed.
  Lemma union_empty X : X    X.
  Proof. by apply union_least. Qed.
391
  Global Instance union_proper : Proper (() ==> () ==> ()) (@union A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
392 393 394 395
  Proof.
    unfold equiv, preorder_equiv.
    split; apply union_preserving; simpl in *; tauto.
  Qed.
396
  Global Instance: IdemP (() : relation A) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  Proof. split; eauto. Qed.
398
  Global Instance: LeftId (() : relation A)  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
399
  Proof. split; eauto. Qed.
400
  Global Instance: RightId (() : relation A)  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
401
  Proof. split; eauto. Qed.
402
  Global Instance: Comm (() : relation A) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  Proof. split; auto. Qed.
404
  Global Instance: Assoc (() : relation A) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
405 406 407 408 409 410 411 412 413
  Proof. split; auto. Qed.
  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. repeat split; eauto. intros HXY. rewrite <-HXY. auto. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. apply subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. apply subseteq_union. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. split; eauto. Qed.
414 415
  Global Instance union_list_proper: Proper (() ==> ()) (union_list (A:=A)).
  Proof. by induction 1; simpl; try apply union_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
416 417 418 419 420 421 422 423 424
  Lemma union_list_nil :  @nil A = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
  Proof.
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
425
    by rewrite IH, (assoc _).
Robbert Krebbers's avatar
Robbert Krebbers committed
426 427 428 429 430
  Qed.
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
  Proof.
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
431
      union_list_singleton, (comm _), IH.
Robbert Krebbers's avatar
Robbert Krebbers committed
432 433 434 435 436 437
  Qed.
  Lemma union_list_preserving Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_preserving. Qed.
  Lemma empty_union X Y : X  Y    X    Y  .
  Proof.
    split.
438
    - intros HXY. split; apply equiv_empty;
439
        by trans (X  Y); [auto | rewrite HXY].
440
    - intros [HX HY]. by rewrite HX, HY, (left_id _ _).
Robbert Krebbers's avatar
Robbert Krebbers committed
441 442 443 444
  Qed.
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
  Proof.
    split.
445 446
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
447 448 449 450
  Qed.

  Section leibniz.
    Context `{!LeibnizEquiv A}.
451 452
    Global Instance: IdemP (=) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
453 454 455 456
    Global Instance: LeftId (=)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance: RightId (=)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
457 458 459 460
    Global Instance: Comm (=) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance: Assoc (=) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_list_singleton_L (X : A) :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L (Xs1 Xs2 : list A) :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L (Xs : list A) :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
    Context `{ X Y : A, Decision (X  Y)}.
    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.
    Context `{!LeibnizEquiv A}.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End join_semi_lattice.

(** * Meet semi lattices *)
(** The dual of the above section, but now for meet semi lattices. *)
Section meet_semi_lattice.
  Context `{MeetSemiLattice A}.
  Implicit Types X Y : A.
  Implicit Types Xs Ys : list A.

  Hint Resolve intersection_subseteq_l intersection_subseteq_r
    intersection_greatest.
  Lemma intersection_subseteq_l_transitive X1 X2 Y : X1  X2  X1  Y  X2.
505
  Proof. intros. trans X1; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
506
  Lemma intersection_subseteq_r_transitive X1 X2 Y : X1  X2  Y  X1  X2.
507
  Proof. intros. trans X1; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
508 509 510 511 512 513 514 515 516
  Hint Resolve intersection_subseteq_l_transitive
    intersection_subseteq_r_transitive.
  Lemma intersection_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. auto. Qed.
  Lemma intersection_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. auto. Qed.
  Lemma intersection_preserving X1 X2 Y1 Y2 :
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
  Proof. auto. Qed.
517
  Global Instance: Proper (() ==> () ==> ()) (@intersection A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
518 519 520 521
  Proof.
    unfold equiv, preorder_equiv. split;
      apply intersection_preserving; simpl in *; tauto.
  Qed.
522
  Global Instance: IdemP (() : relation A) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
523
  Proof. split; eauto. Qed.
524
  Global Instance: Comm (() : relation A) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
525
  Proof. split; auto. Qed.
526
  Global Instance: Assoc (() : relation A) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
527 528 529 530 531 532 533 534 535 536
  Proof. split; auto. Qed.
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. repeat split; eauto. intros HXY. rewrite <-HXY. auto. Qed.
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv A}.
537 538 539 540 541 542
    Global Instance: IdemP (=) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance: Comm (=) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance: Assoc (=) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
543 544 545 546 547 548 549 550 551 552 553 554 555
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.
  End leibniz.
End meet_semi_lattice.

(** * Lower bounded lattices *)
Section lattice.
  Context `{Empty A, Lattice A, !EmptySpec A}.

556
  Global Instance: LeftAbsorb (() : relation A)  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
557
  Proof. split. by apply intersection_subseteq_l. by apply subseteq_empty. Qed.
558
  Global Instance: RightAbsorb (() : relation A)  ().
559
  Proof. intros ?. by rewrite (comm _), (left_absorb _ _). Qed.
560
  Lemma union_intersection_l (X Y Z : A) : X  (Y  Z)  (X  Y)  (X  Z).
Robbert Krebbers's avatar
Robbert Krebbers committed
561
  Proof.
562
    split; [apply union_least|apply lattice_distr].
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564
    { apply intersection_greatest; auto using union_subseteq_l. }
    apply intersection_greatest.
565 566
    - apply union_subseteq_r_transitive, intersection_subseteq_l.
    - apply union_subseteq_r_transitive, intersection_subseteq_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
  Qed.
568
  Lemma union_intersection_r (X Y Z : A) : (X  Y)  Z  (X  Z)  (Y  Z).
569
  Proof. by rewrite !(comm _ _ Z), union_intersection_l. Qed.
570
  Lemma intersection_union_l (X Y Z : A) : X  (Y  Z)  (X  Y)  (X  Z).
Robbert Krebbers's avatar
Robbert Krebbers committed
571
  Proof.
572
    split.
573
    - rewrite union_intersection_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
574 575
      apply intersection_greatest.
      { apply union_subseteq_r_transitive, intersection_subseteq_l. }
576
      rewrite union_intersection_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
577
      apply intersection_preserving; auto using union_subseteq_l.
578
    - apply intersection_greatest.
Robbert Krebbers's avatar
Robbert Krebbers committed
579 580 581 582 583
      { apply union_least; auto using intersection_subseteq_l. }
      apply union_least.
      + apply intersection_subseteq_r_transitive, union_subseteq_l.
      + apply intersection_subseteq_r_transitive, union_subseteq_r.
  Qed.
584
  Lemma intersection_union_r (X Y Z : A) : (X  Y)  Z  (X  Z)  (Y  Z).
585
  Proof. by rewrite !(comm _ _ Z), intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
586 587 588 589 590 591 592

  Section leibniz.
    Context `{!LeibnizEquiv A}.
    Global Instance: LeftAbsorb (=)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance: RightAbsorb (=)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.
593 594 595 596 597 598 599 600
    Lemma union_intersection_l_L (X Y Z : A) : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L (X Y Z : A) : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
    Lemma intersection_union_l_L (X Y Z : A) : X  (Y  Z)  (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
    Lemma intersection_union_r_L (X Y Z : A) : (X  Y)  Z  (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply intersection_union_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
601 602
  End leibniz.
End lattice.