option.v 15.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
From prelude Require Export tactics.
Robbert Krebbers's avatar
Robbert Krebbers committed
6 7 8 9 10 11 12 13 14 15 16 17 18

Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

(** * General definitions and theorems *)
(** Basic properties about equality. *)
Lemma None_ne_Some {A} (a : A) : None  Some a.
Proof. congruence. Qed.
Lemma Some_ne_None {A} (a : A) : Some a  None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some {A} (x : option A) a : x = None  x  Some a.
Proof. congruence. Qed.
19
Instance Some_inj {A} : Inj (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
Proof. congruence. Qed.

(** The non dependent elimination principle on the option type. *)
Definition default {A B} (b : B) (x : option A) (f : A  B)  : B :=
  match x with None => b | Some a => f a end.

(** The [from_option] function allows us to get the value out of the option
type by specifying a default value. *)
Definition from_option {A} (a : A) (x : option A) : A :=
  match x with None => a | Some b => b end.

(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
Lemma option_eq {A} (x y : option A) : x = y   a, x = Some a  y = Some a.
Proof. split; [by intros; by subst |]. destruct x, y; naive_solver. Qed.
Lemma option_eq_1 {A} (x y : option A) a : x = y  x = Some a  y = Some a.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (x y : option A) a : x = y  y = Some a  x = Some a.
Proof. congruence. Qed.

Definition is_Some {A} (x : option A) :=  y, x = Some y.
Lemma mk_is_Some {A} (x : option A) y : x = Some y  is_Some x.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.

Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x).
Proof.
  set (P (y : option A) := match y with Some _ => True | _ => False end).
  set (f x := match x return P x  is_Some x with
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
  set (g x (H : is_Some x) :=
    match H return P x with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert ( x H, f x (g x H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct x, p1.
Qed.
Instance is_Some_dec {A} (x : option A) : Decision (is_Some x) :=
  match x with
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
  end.

Definition is_Some_proj {A} {x : option A} : is_Some x  A :=
  match x with Some a => λ _, a | None => False_rect _  is_Some_None end.
Definition Some_dec {A} (x : option A) : { a | x = Some a } + { x = None } :=
  match x return { a | x = Some a } + { x = None } with
  | Some a => inleft (a  eq_refl _)
  | None => inright eq_refl
  end.

Lemma eq_None_not_Some {A} (x : option A) : x = None  ¬is_Some x.
Proof. destruct x; unfold is_Some; naive_solver. Qed.
Lemma not_eq_None_Some `(x : option A) : x  None  is_Some x.
Proof. rewrite eq_None_not_Some. split. apply dec_stable. tauto. Qed.

(** Lifting a relation point-wise to option *)
Inductive option_Forall2 {A B} (P: A  B  Prop) : option A  option B  Prop :=
  | Some_Forall2 x y : P x y  option_Forall2 P (Some x) (Some y)
  | None_Forall2 : option_Forall2 P None None.
Definition option_relation {A B} (R: A  B  Prop) (P: A  Prop) (Q: B  Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.

(** Setoids *)
Section setoids.
92
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  Global Instance option_equiv : Equiv (option A) := option_Forall2 ().
94
  Global Instance option_equivalence : Equivalence (() : relation (option A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96
  Proof.
    split.
97 98
    - by intros []; constructor.
    - by destruct 1; constructor.
99
    - destruct 1; inversion 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102 103
  Qed.
  Global Instance Some_proper : Proper (() ==> ()) (@Some A).
  Proof. by constructor. Qed.
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
104
  Proof. intros x y; destruct 1; fold_leibniz; congruence. Qed.
105 106 107 108 109
  Lemma equiv_None (mx : option A) : mx  None  mx = None.
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
  Lemma equiv_Some (mx my : option A) x :
    mx  my  mx = Some x   y, my = Some y  x  y.
  Proof. destruct 1; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111
  Global Instance is_Some_proper : Proper (() ==> iff) (@is_Some A).
  Proof. inversion_clear 1; split; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
End setoids.

(** Equality on [option] is decidable. *)
Instance option_eq_None_dec {A} (x : option A) : Decision (x = None) :=
  match x with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (x : option A) : Decision (None = x) :=
  match x with Some _ => right (None_ne_Some _) | None => left eq_refl end.
Instance option_eq_dec `{dec :  x y : A, Decision (x = y)}
  (x y : option A) : Decision (x = y).
Proof.
 refine
  match x, y with
  | Some a, Some b => cast_if (decide (a = b))
  | None, None => left _ | _, _ => right _
  end; clear dec; abstract congruence.
Defined.

(** * Monadic operations *)
Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f x,
  match x with Some a => f a | None => None end.
Instance option_join: MJoin option := λ A x,
  match x with Some x => x | None => None end.
Instance option_fmap: FMap option := @option_map.
Instance option_guard: MGuard option := λ P dec A x,
  match dec with left H => x H | _ => None end.

Lemma fmap_is_Some {A B} (f : A  B) x : is_Some (f <$> x)  is_Some x.
Proof. unfold is_Some; destruct x; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) x y :
  f <$> x = Some y   x', x = Some x'  y = f x'.
Proof. destruct x; naive_solver. Qed.
Lemma fmap_None {A B} (f : A  B) x : f <$> x = None  x = None.
Proof. by destruct x. Qed.
Lemma option_fmap_id {A} (x : option A) : id <$> x = x.
Proof. by destruct x. Qed.
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) x :
  g  f <$> x = g <$> f <$> x.
Proof. by destruct x. Qed.
151 152 153 154 155 156
Lemma option_fmap_ext {A B} (f g : A  B) x :
  ( y, f y = g y)  f <$> x = g <$> x.
Proof. destruct x; simpl; auto with f_equal. Qed.
Lemma option_fmap_setoid_ext `{Equiv A, Equiv B} (f g : A  B) x :
  ( y, f y  g y)  f <$> x  g <$> x.
Proof. destruct x; constructor; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160 161 162 163 164
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) x :
  (f <$> x) = g = x = g  f.
Proof. by destruct x. Qed.
Lemma option_bind_assoc {A B C} (f : A  option B)
  (g : B  option C) (x : option A) : (x = f) = g = x = (mbind g  f).
Proof. by destruct x; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A  option B) x y :
  ( a, f a = g a)  x = y  x = f = y = g.
165
Proof. intros. destruct x, y; simplify_eq; csimpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167 168 169 170 171 172 173 174 175
Lemma option_bind_ext_fun {A B} (f g : A  option B) x :
  ( a, f a = g a)  x = f = x = g.
Proof. intros. by apply option_bind_ext. Qed.
Lemma bind_Some {A B} (f : A  option B) (x : option A) b :
  x = f = Some b   a, x = Some a  f a = Some b.
Proof. split. by destruct x as [a|]; [exists a|]. by intros (?&->&?). Qed.
Lemma bind_None {A B} (f : A  option B) (x : option A) :
  x = f = None  x = None   a, x = Some a  f a = None.
Proof.
  split; [|by intros [->|(?&->&?)]].
176
  destruct x; intros; simplify_eq/=; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
Qed.
Lemma bind_with_Some {A} (x : option A) : x = Some = x.
Proof. by destruct x. Qed.

(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A  B) :=
  maybe : B  option A.
Arguments maybe {_ _} _ {_} !_ /.
Class Maybe2 {A1 A2 B : Type} (c : A1  A2  B) :=
  maybe2 : B  option (A1 * A2).
Arguments maybe2 {_ _ _} _ {_} !_ /.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1  A2  A3  B) :=
  maybe3 : B  option (A1 * A2 * A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ /.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1  A2  A3  A4  B) :=
  maybe4 : B  option (A1 * A2 * A3 * A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ /.

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1  c2) := λ x,
  maybe c1 x = maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ /.

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.
Instance maybe_Some {A} : Maybe (@Some A) := id.
Arguments maybe_Some _ !_ /.

(** * Union, intersection and difference *)
Instance option_union_with {A} : UnionWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, Some b => Some b
  | None, None => None
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f x y, match x, y with Some a, Some b => f a b | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
Lemma option_union_Some {A} (x y : option A) z :
  x  y = Some z  x = Some z  y = Some z.
227
Proof. destruct x, y; intros; simplify_eq; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
228 229 230 231 232 233 234

Section option_union_intersection_difference.
  Context {A} (f : A  A  option A).
  Global Instance: LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
235 236
  Global Instance: Comm (=) f  Comm (=) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
237 238 239 240
  Global Instance: LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
241 242
  Global Instance: Comm (=) f  Comm (=) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  Global Instance: RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.
End option_union_intersection_difference.

(** * Tactics *)
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
  | H : appcontext C [@mguard option _ ?P ?dec] |- _ =>
    change (@mguard option _ P dec) with (λ A (x : P  option A),
      match @decide P dec with left H' => x H' | _ => None end) in *;
    destruct_decide (@decide P dec) as Hx
  | |- appcontext C [@mguard option _ ?P ?dec] =>
    change (@mguard option _ P dec) with (λ A (x : P  option A),
      match @decide P dec with left H' => x H' | _ => None end) in *;
    destruct_decide (@decide P dec) as Hx
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.

Lemma option_guard_True {A} P `{Decision P} (x : option A) :
  P  guard P; x = x.
Proof. intros. by case_option_guard. Qed.
Lemma option_guard_False {A} P `{Decision P} (x : option A) :
  ¬P  guard P; x = None.
Proof. intros. by case_option_guard. Qed.
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (x : option A) :
  (P  Q)  guard P; x = guard Q; x.
Proof. intros [??]. repeat case_option_guard; intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
272
Tactic Notation "simpl_option" "by" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  let assert_Some_None A o H := first
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
      assert (o = Some x') as H by tac
    | assert (o = None) as H by tac ]
  in repeat match goal with
  | H : appcontext [@mret _ _ ?A] |- _ =>
     change (@mret _ _ A) with (@Some A) in H
  | |- appcontext [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
  | H : context [mbind (M:=option) (A:=?A) ?f ?o] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?o] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [default (A:=?A) _ ?o _] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [from_option (A:=?A) _ ?o] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?o with _ => _ end ] |- _ =>
    match type of o with
    | option ?A =>
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?o] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?o] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [default (A:=?A) _ ?o _] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ ?o] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [ match ?o with _ => _ end ] =>
    match type of o with
    | option ?A =>
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
    end
  | H : context [decide _] |- _ => rewrite decide_True in H by tac
  | H : context [decide _] |- _ => rewrite decide_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
315 316 317 318
  | H : context [None  _] |- _ => rewrite (left_id_L None ()) in H
  | H : context [_  None] |- _ => rewrite (right_id_L None ()) in H
  | |- context [None  _] => rewrite (left_id_L None ())
  | |- context [_  None] => rewrite (right_id_L None ())
Robbert Krebbers's avatar
Robbert Krebbers committed
319
  end.
320
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
321
  repeat match goal with
322
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  | _ => progress simpl_option by tac
Robbert Krebbers's avatar
Robbert Krebbers committed
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
  | H : mbind (M:=option) ?f ?o = ?x |- _ =>
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
    let y := fresh in destruct o as [y|] eqn:?;
      [change (f y = x) in H|change (None = x) in H]
  | H : ?x = mbind (M:=option) ?f ?o |- _ =>
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = f y) in H|change (x = None) in H]
  | H : fmap (M:=option) ?f ?o = ?x |- _ =>
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
    let y := fresh in destruct o as [y|] eqn:?;
      [change (Some (f y) = x) in H|change (None = x) in H]
  | H : ?x = fmap (M:=option) ?f ?o |- _ =>
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = Some (f y)) in H|change (x = None) in H]
  | _ => progress case_decide
  | _ => progress case_option_guard
  end.
352
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.