logic.tex 23.6 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{()})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, ()$. \\
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr'$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr'$ is forked off.
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
\item There is a predicate defining \emph{atomic} expressions satisfying
\let\oldcr\cr
\begin{mathpar}
  {\All\expr. \atomic(\expr) \Ra \toval(\expr) = \bot} \and
  {{
    \begin{inbox}
\All\expr_1, \state_1, \expr_2, \state_2, \expr'. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr' \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
    \end{inbox}
}}
\end{mathpar}
In other words, atomic expression \emph{reduce in one step to a value}.
It does not matter whether they fork off an arbitrary expression.
25 26
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
27
\begin{defn}[Context]
Ralf Jung's avatar
Ralf Jung committed
28 29 30 31 32 33 34 35 36
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
  \begin{enumerate}
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
    $\All \expr_1, \state_1, \expr_2, \state_2, \expr'. \expr_1, \state_1 \step \expr_2,\state_2,\expr' \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr' $
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
    $\All \expr_1', \state_1, \expr_2, \state_2, \expr'. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr' \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr' $
  \end{enumerate}
Ralf Jung's avatar
Ralf Jung committed
37 38
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
39 40 41
\subsection{The concurrent language}

For any language $\Lang$, we define the corresponding thread-pool semantics.
42 43 44

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
45
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
46 47
\]

Ralf Jung's avatar
Ralf Jung committed
48 49
\judgment{Machine reduction} {\cfg{\tpool}{\state} \step
  \cfg{\tpool'}{\state'}}
50 51
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
52 53 54 55 56 57 58
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr' \and \expr' \neq ()}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr']}{\state'}}
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
59 60
\end{mathpar}

61
\clearpage
Ralf Jung's avatar
Ralf Jung committed
62 63 64 65 66 67
\section{The logic}

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
\item A language $\Lang$
\item A locally contractive functor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state
Ralf Jung's avatar
Ralf Jung committed
68
  \ralf{$\iFunc$ also needs to have a single-unit.}
Ralf Jung's avatar
Ralf Jung committed
69
\end{itemize}
70

Ralf Jung's avatar
Ralf Jung committed
71 72 73
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
74
\[
75
	\SigType \supseteq \{ \textlog{Val}, \textlog{Expr}, \textlog{State}, \textlog{M}, \textlog{InvName}, \textlog{InvMask}, \Prop \}
76
\]
Ralf Jung's avatar
Ralf Jung committed
77 78 79
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
80 81 82 83 84
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
85 86 87 88 89 90

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
91 92

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
93
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
94

95
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
96
  \type \bnfdef{}&
Ralf Jung's avatar
Ralf Jung committed
97
      \sigtype \mid
98
      1 \mid
Ralf Jung's avatar
Ralf Jung committed
99 100 101
      \type \times \type \mid
      \type \to \type
\\[0.4em]
Ralf Jung's avatar
Ralf Jung committed
102
  \term, \prop, \pred \bnfdef{}&
103
      \var \mid
104
      \sigfn(\term_1, \dots, \term_n) \mid
105
      () \mid
106 107
      (\term, \term) \mid
      \pi_i\; \term \mid
108
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
109
      \term(\term)  \mid
110 111 112 113 114
      \munit \mid
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
115
    \term =_\type \term \mid
116 117 118 119 120 121
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
122
    \MU \var:\type. \pred  \mid
Ralf Jung's avatar
Ralf Jung committed
123 124
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
125 126 127 128 129 130
\\&
    \knowInv{\term}{\prop} \mid
    \ownGGhost{\term} \mid
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
131
    \pvs[\term][\term] \prop\mid
Ralf Jung's avatar
Ralf Jung committed
132
    \wpre{\term}{\Ret\var.\term}[\term]
133
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
134
Recursive predicates must be \emph{guarded}: in $\MU \var. \pred$, the variable $\var$ can only appear under the later $\later$ modality.
135

136
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
Ralf Jung's avatar
Ralf Jung committed
137
We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
138 139
If we omit the mask, then it is $\top$ for weakest precondition $\wpre\expr{\Ret\var.\prop}$ and $\emptyset$ for primitive view shifts $\pvs \prop$.

140

141
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
142
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
143 144
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
145
 \text{metavariable} & \text{type} \\\hline
146
  \term, \termB & \text{arbitrary} \\
147 148 149
  \val, \valB & \textlog{Val} \\
  \expr & \textlog{Expr} \\
  \state & \textlog{State} \\
150 151 152
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
153
 \text{metavariable} & \text{type} \\\hline
154 155 156
  \iname & \textlog{InvName} \\
  \mask & \textlog{InvMask} \\
  \melt, \meltB & \textlog{M} \\
157
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
158
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
159 160 161 162
\end{array}
\]

\paragraph{Variable conventions.}
163
We often abuse notation, using the preceding \emph{term} meta-variables to range over (bound) \emph{variables}.
164
We omit type annotations in binders, when the type is clear from context.
Ralf Jung's avatar
Ralf Jung committed
165
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
166 167 168 169 170


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
171
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
172

Ralf Jung's avatar
Ralf Jung committed
173 174
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
175

Ralf Jung's avatar
Ralf Jung committed
176
\judgment{Well-typed terms}{\vctx \proves_\Sig \wtt{\term}{\type}}
177 178
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
179
	\axiom{x : \type \proves \wtt{x}{\type}}
180
\and
Ralf Jung's avatar
Ralf Jung committed
181 182
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
183
\and
Ralf Jung's avatar
Ralf Jung committed
184 185
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
186
\and
Ralf Jung's avatar
Ralf Jung committed
187 188
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
189 190 191 192 193 194 195 196 197 198 199
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
200
	\axiom{\vctx \proves \wtt{()}{1}}
201
\and
Ralf Jung's avatar
Ralf Jung committed
202 203
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
204
\and
Ralf Jung's avatar
Ralf Jung committed
205 206
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
207 208
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
209 210
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
211 212
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
213 214
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
215 216
%%% monoids
\and
217
	\infer{}{\vctx \proves \wtt{\munit}{\textlog{M} \to \textlog{M}}}
218
\and
219 220
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}} \and \vctx \proves \wtt{\meltB}{\textlog{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textlog{M}}}
221 222 223 224 225 226
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
227 228
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
246 247
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
248
	}{
249
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
250 251
	}
\and
Ralf Jung's avatar
Ralf Jung committed
252 253
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
254
\and
Ralf Jung's avatar
Ralf Jung committed
255 256
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
257 258 259
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
260
		\vctx \proves \wtt{\iname}{\textlog{InvName}}
261 262 263 264
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
265
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
266 267
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
\and
268
	\infer{\vctx \proves \wtt{\state}{\textlog{State}}}
269 270 271 272 273 274 275 276 277 278
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
279 280
		\vctx \proves \wtt{\mask}{\textlog{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textlog{InvMask}}
281
	}{
Ralf Jung's avatar
Ralf Jung committed
282
		\vctx \proves \wtt{\pvs[\mask][\mask'] \prop}{\Prop}
283 284 285
	}
\and
	\infer{
286 287 288
		\vctx \proves \wtt{\expr}{\textlog{Expr}} \and
		\vctx,\var:\textlog{Val} \proves \wtt{\term}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textlog{InvMask}}
289
	}{
Ralf Jung's avatar
Ralf Jung committed
290
		\vctx \proves \wtt{\wpre{\expr}{\Ret\var.\term}[\mask]}{\Prop}
291 292 293
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
294
\subsection{Timeless propositions}
Ralf Jung's avatar
Ralf Jung committed
295 296 297

Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
This is a \emph{meta-level} assertions about propositions, defined by the following judgment.
298

Ralf Jung's avatar
Ralf Jung committed
299
\judgment{Timeless Propositions}{\timeless{P}}
300

Ralf Jung's avatar
Ralf Jung committed
301 302
\ralf{Define a judgment that defines them.}

Ralf Jung's avatar
Ralf Jung committed
303
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
304

305 306
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Ralf Jung's avatar
Ralf Jung committed
307
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
308 309 310
Axioms $\prop \Ra \propB$ stand for judgments $\vctx \mid \cdot \proves \prop \Ra \propB$ with no assumptions.
(Bi-implications are analogous.)

311
\judgment{}{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
312
\paragraph{Laws of intuitionistic higher-order logic.}
313
This is entirely standard.
314 315
\begin{mathparpagebreakable}
\infer[Asm]
316 317 318
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
319
\infer[Eq]
320 321
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
322
\and
323 324 325 326 327 328 329 330 331 332 333 334
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
335
\infer[$\wedge$I]
336 337 338
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
339
\infer[$\wedge$EL]
340 341 342
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
343
\infer[$\wedge$ER]
344 345 346
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
347
\infer[$\vee$IL]
348 349 350
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
351
\infer[$\vee$IR]
352 353 354
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
355 356 357 358 359 360
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
361
\infer[$\Ra$I]
362 363 364
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
365
\infer[$\Ra$E]
366 367 368
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
369 370 371
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
372
\and
373 374 375 376
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
377
\and
378 379 380 381
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
382
\and
383 384 385 386
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
387
\and
388 389 390
\infer[$\lambda$]
  {}
  {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
391
\and
392 393 394 395
\infer[$\mu$]
  {}
  {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
396

Ralf Jung's avatar
Ralf Jung committed
397
\paragraph{Laws of (affine) bunched implications.}
398 399
\begin{mathpar}
\begin{array}{rMcMl}
400
  \TRUE * \prop &\Lra& \prop \\
401
  \prop * \propB &\Lra& \propB * \prop \\
402
  (\prop * \propB) * \propC &\Lra& \prop * (\propB * \propC)
403 404
\end{array}
\and
405
\infer[$*$-mono]
406 407 408
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
409
\and
410
\inferB[$\wand$I-E]
411 412
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
413 414
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
415
\paragraph{Laws for ghosts and physical resources.}
416 417 418
\begin{mathpar}
\begin{array}{rMcMl}
\ownGGhost{\melt} * \ownGGhost{\meltB} &\Lra&  \ownGGhost{\melt \mtimes \meltB} \\
419 420
%\TRUE &\Ra&  \ownGGhost{\munit}\\
\ownGGhost{\melt} &\Ra& \melt \in \mval % * \ownGGhost{\melt}
421 422 423
\end{array}
\and
\begin{array}{c}
424
\ownPhys{\state} * \ownPhys{\state'} \Ra \FALSE
425 426 427
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
428
\paragraph{Laws for the later modality.}
429
\begin{mathpar}
430
\infer[$\later$-mono]
431 432 433
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
434 435 436
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
437
\and
438 439 440 441 442
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
443 444 445 446
  \later{(\prop \wedge \propB)} &\Lra& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\Lra& \later{\prop} \vee \later{\propB} \\
\end{array}
\and
447
\begin{array}[c]{rMcMl}
448
  \later{\All x.\prop} &\Lra& \All x. \later\prop \\
449
  \Exists x. \later\prop &\Ra& \later{\Exists x.\prop}  \\
450 451 452 453
  \later{(\prop * \propB)} &\Lra& \later\prop * \later\propB
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
454
\paragraph{Laws for the always modality.}
455
\begin{mathpar}
456
\infer[$\always$I]
457 458 459
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
460 461 462 463 464 465 466
\infer[$\always$E]{}
  {\always{\prop} \Ra \prop}
\and
\begin{array}[c]{rMcMl}
  \always{(\prop * \propB)} &\Ra& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\Ra& \always{\prop} \land \propB \\
  \always{\later\prop} &\Lra& \later\always{\prop} \\
467 468
\end{array}
\and
469
\begin{array}[c]{rMcMl}
470 471 472 473 474
  \always{(\prop \land \propB)} &\Lra& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\Lra& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\Lra& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\Lra& \Exists x. \always{\prop} \\
\end{array}
Ralf Jung's avatar
Ralf Jung committed
475 476 477 478 479 480
\and
{ \term =_\type \term' \Ra \always \term =_\type \term'}
\and
{ \knowInv\iname\prop \Ra \always \knowInv\iname\prop}
\and
{ \ownGGhost{\munit(\melt)} \Ra \always \ownGGhost{\munit(\melt)}}
481 482
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
483
\paragraph{Laws of primitive view shifts.}
Ralf Jung's avatar
Ralf Jung committed
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
\begin{mathpar}
\infer[pvs-intro]
{}{\prop \proves \pvs[\mask] \prop}

\infer[pvs-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[pvs-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[pvs-trans]
{\mask_2 \subseteq \mask_1 \cup \mask_3}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[pvs-mask-frame]
{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_f][\mask_2 \uplus \mask_f] \prop}

\infer[pvs-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}

\infer[pvs-allocI]
{\text{$\mask$ is infinite}}
{\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}

\infer[pvs-openI]
{}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}

\infer[pvs-closeI]
{}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}

\infer[pvs-update]
{\melt \mupd \meltsB}
{\ownGGhost\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownGGhost\meltB}
\end{mathpar}
520

Ralf Jung's avatar
Ralf Jung committed
521
\paragraph{Laws of weakest preconditions.}
Ralf Jung's avatar
Ralf Jung committed
522 523 524 525 526
\begin{mathpar}
\infer[wp-value]
{}{\prop[\val/\var] \proves \wpre{\val}{\Ret\var.\prop}[\mask]}

\infer[wp-mono]
527
{\mask_1 \subseteq \mask_2 \and \var:\textlog{val}\mid\prop \proves \propB}
Ralf Jung's avatar
Ralf Jung committed
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
{\wpre\expr{\Ret\var.\prop}[\mask_1] \proves \wpre\expr{\Ret\var.\propB}[\mask_2]}

\infer[pvs-wp]
{}{\pvs[\mask] \wpre\expr{\Ret\var.\prop}[\mask] \proves \wpre\expr{\Ret\var.\prop}[\mask]}

\infer[wp-pvs]
{}{\wpre\expr{\Ret\var.\pvs[\mask] \prop}[\mask] \proves \wpre\expr{\Ret\var.\prop}[\mask]}

\infer[wp-atomic]
{\mask_2 \subseteq \mask_1 \and \physatomic{\expr}}
{\pvs[\mask_1][\mask_2] \wpre\expr{\Ret\var. \pvs[\mask_2][\mask_1]\prop}[\mask_2]
 \proves \wpre\expr{\Ret\var.\prop}[\mask_1]}

\infer[wp-frame]
{}{\propB * \wpre\expr{\Ret\var.\prop}[\mask] \proves \wpre\expr{\Ret\var.\propB*\prop}[\mask]}

\infer[wp-frame-step]
{\toval(\expr) = \bot}
{\later\propB * \wpre\expr{\Ret\var.\prop}[\mask] \proves \wpre\expr{\Ret\var.\propB*\prop}[\mask]}

\infer[wp-bind]
{\text{$\lctx$ is a context}}
{\wpre\expr{\Ret\var. \wpre{\lctx(\ofval(\var))}{\Ret\varB.\prop}[\mask]}[\mask] \proves \wpre{\lctx(\expr)}{\Ret\varB.\prop}[\mask]}
\end{mathpar}
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
\subsection{Lifting of operational semantics}\label{sec:lifting}
~\\\ralf{Add this.}

% The following lemmas help in proving axioms for a particular language.
% The first applies to expressions with side-effects, and the second to side-effect-free expressions.
% \dave{Update the others, and the example, wrt the new treatment of $\predB$.}
% \begin{align*}
%  &\All \expr, \state, \pred, \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \expr', \state'. \cfg{\state}{\expr} \step \cfg{\state'}{\expr'} \implies \pred(\expr', \state')) \implies \\
%  &{} \proves \bigl( (\All \expr', \state'. \pred (\expr', \state') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{ \later \prop * \ownPhys{\state} }{\expr}{\Ret\val. \propB}[\mask] \bigr) \\
%  \quad\\
%  &\All \expr, \pred, \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \pred(\expr_2)) \implies \\
%  &{} \proves \bigl( (\All \expr'. \pred(\expr') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] \bigr)
% \end{align*}
% Note that $\pred$ is a meta-logic predicate---it does not depend on any world or resources being owned.

% The following specializations cover all cases of a heap-manipulating lambda calculus like $F_{\mu!}$.
% \begin{align*}
%  &\All \expr, \expr', \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \expr_2 = \expr') \implies \\
%  &{} \proves (\hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask] \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] ) \\
%  \quad \\
%  &\All \expr, \state, \pred, \mask. \\
%  &\textlog{atomic}(e) \implies \\
%  &\bigl(\All \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \pred(\expr_2, \state_2)\bigr) \implies \\
%  &{} \proves (\hoare{ \ownPhys{\state} }{\expr}{\Ret\val. \Exists\state'. \ownPhys{\state'} \land \pred(\val, \state') }[\mask] )
% \end{align*}
% The first is restricted to deterministic pure reductions, like $\beta$-reduction.
% The second is suited to proving triples for (possibly non-deterministic) atomic expressions; for example, with $\expr \eqdef \;!\ell$ (dereferencing $\ell$) and $\state \eqdef h \mtimes \ell \mapsto \valB$ and $\pred(\val, \state') \eqdef \state' = (h \mtimes \ell \mapsto \valB) \land \val = \valB$, one obtains the axiom $\All h, \ell, \valB. \hoare{\ownPhys{h \mtimes \ell \mapsto \valB}}{!\ell}{\Ret\val. \val = \valB \land \ownPhys{h \mtimes \ell \mapsto \valB} }$.
% %Axioms for CAS-like operations can be obtained by first deriving rules for the two possible cases, and then using the disjunction rule.


\subsection{Adequacy}

The adequacy statement reads as follows:
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
593
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
Ralf Jung's avatar
Ralf Jung committed
594 595 596 597
 \\&(\All n. \melt \in \mval_n) \Ra
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}{x.\; \pred(x)}[\mask]) \Ra
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
598 599
     \\&\pred(\val)
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
600
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626


% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




627 628 629 630
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: