barrier.v 25.3 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
From prelude Require Export functions.
2
From algebra Require Export upred_big_op.
3
From program_logic Require Export sts saved_prop.
4
From program_logic Require Import hoare.
5
From heap_lang Require Export derived heap wp_tactics notation.
Ralf Jung's avatar
Ralf Jung committed
6
Import uPred.
7
8
9

Definition newchan := (λ: "", ref '0)%L.
Definition signal := (λ: "x", "x" <- '1)%L.
10
Definition wait := (rec: "wait" "x" :=if: !"x" = '1 then '() else "wait" "x")%L.
11

12
13
14
(** The STS describing the main barrier protocol. Every state has an index-set
    associated with it. These indices are actually [gname], because we use them
    with saved propositions. *)
15
Module barrier_proto.
16
17
  Inductive phase := Low | High.
  Record stateT := State { state_phase : phase; state_I : gset gname }.
18
19
  Inductive token := Change (i : gname) | Send.

20
21
22
  Global Instance stateT_inhabited: Inhabited stateT.
  Proof. split. exact (State Low ). Qed.

23
  Definition change_tokens (I : gset gname) : set token :=
Ralf Jung's avatar
Ralf Jung committed
24
    mkSet (λ t, match t with Change i => i  I | Send => False end).
25

26
27
28
  Inductive trans : relation stateT :=
  | ChangeI p I2 I1 : trans (State p I1) (State p I2)
  | ChangePhase I : trans (State Low I) (State High I).
29

30
31
32
  Definition tok (s : stateT) : set token :=
      change_tokens (state_I s)
     match state_phase s with Low =>  | High => {[ Send ]} end.
33

Robbert Krebbers's avatar
Robbert Krebbers committed
34
  Canonical Structure sts := sts.STS trans tok.
35

36
  (* The set of states containing some particular i *)
37
38
39
40
  Definition i_states (i : gname) : set stateT :=
    mkSet (λ s, i  state_I s).

  Lemma i_states_closed i :
Robbert Krebbers's avatar
Robbert Krebbers committed
41
    sts.closed (i_states i) {[ Change i ]}.
42
43
  Proof.
    split.
Ralf Jung's avatar
Ralf Jung committed
44
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
45
      destruct p; set_solver.
46
47
48
49
50
    - (* If we do the destruct of the states early, and then inversion
         on the proof of a transition, it doesn't work - we do not obtain
         the equalities we need. So we destruct the states late, because this
         means we can use "destruct" instead of "inversion". *)
      move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
Ralf Jung's avatar
Ralf Jung committed
51
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
52
53
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; last done; move:Hs1 Hdisj Htok.
54
55
      rewrite /= /tok /=. 
      (* TODO: Can this be done better? *)
Ralf Jung's avatar
Ralf Jung committed
56
57
      intros. apply dec_stable. 
      assert (Change i  change_tokens I1) as HI1
58
        by (rewrite mkSet_not_elem_of; set_solver +Hs1).
Ralf Jung's avatar
Ralf Jung committed
59
60
      assert (Change i  change_tokens I2) as HI2.
      { destruct p.
61
62
        - set_solver +Htok Hdisj HI1.
        - set_solver +Htok Hdisj HI1 / discriminate. }
Ralf Jung's avatar
Ralf Jung committed
63
64
      done.
  Qed.
65
66
67
68

  (* The set of low states *)
  Definition low_states : set stateT :=
    mkSet (λ s, if state_phase s is Low then True else False).
69
70

  Lemma low_states_closed : sts.closed low_states {[ Send ]}.
71
72
73
  Proof.
    split.
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
74
      destruct p; set_solver.
75
76
77
78
79
    - move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; move:Hs1 Hdisj Htok =>/=;
                                first by destruct p.
80
      rewrite /= /tok /=. intros. set_solver +Hdisj Htok.
81
82
  Qed.

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  (* Proof that we can take the steps we need. *)
  Lemma signal_step I:
    sts.steps (State Low I, {[Send]}) (State High I, ).
  Proof.
    apply rtc_once. constructor; first constructor;
                        rewrite /= /tok /=; set_solver.
  Qed.

  Lemma wait_step i I :
    i  I  sts.steps (State High I, {[ Change i ]}) (State High (I  {[ i ]}), ).
  Proof.
    intros. apply rtc_once.
    constructor; first constructor; rewrite /= /tok /=; [set_solver..|].
    (* TODO this proof is rather annoying. *)
    apply elem_of_equiv=>t. rewrite !elem_of_union.
    rewrite !mkSet_elem_of /change_tokens /=.
99
    destruct t as [j|]; last set_solver.
100
    rewrite elem_of_difference elem_of_singleton.
101
    destruct (decide (i = j)); set_solver.
102
103
104
105
106
107
108
109
110
111
112
  Qed.
    
  Lemma split_step p i i1 i2 I :
    i  I  i1  I  i2  I  i1  i2 
    sts.steps (State p I, {[ Change i ]})
        (State p ({[i1]}  ({[i2]}  (I  {[i]}))), {[ Change i1; Change i2 ]}).
  Proof.
    intros. apply rtc_once.
    constructor; first constructor; rewrite /= /tok /=; first (destruct p; set_solver).
    (* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
    - apply elem_of_equiv=>t. destruct t; last set_solver.
113
      rewrite !mkSet_elem_of. destruct p; set_solver.
114
    - apply elem_of_equiv=>t. destruct t as [j|]; last set_solver.
115
116
117
118
      rewrite !mkSet_elem_of.
      destruct (decide (i1 = j)); first set_solver. 
      destruct (decide (i2 = j)); first set_solver.
      destruct (decide (i = j)); set_solver.
119
120
  Qed.

121
End barrier_proto.
122
123
124
125
126
127
(* I am too lazy to type the full module name all the time. But then
   why did we even put this into a module? Because some of the names 
   are so general.
   What we'd really like here is to import *some* of the names from
   the module into our namespaces. But Coq doesn't seem to support that...?? *)
Import barrier_proto.
128

129
130
131
(** Now we come to the Iris part of the proof. *)
Section proof.
  Context {Σ : iFunctorG} (N : namespace).
Ralf Jung's avatar
Ralf Jung committed
132
  Context `{heapG Σ} (heapN : namespace).
133
134
  Context `{stsG heap_lang Σ sts}.
  Context `{savedPropG heap_lang Σ}.
Ralf Jung's avatar
Ralf Jung committed
135

136
137
138
139
  Local Hint Immediate i_states_closed low_states_closed : sts.
  Local Hint Resolve signal_step wait_step split_step : sts.
  Local Hint Resolve sts.closed_op : sts.

140
141
142
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
Ralf Jung's avatar
Ralf Jung committed
143

144
  Local Notation iProp := (iPropG heap_lang Σ).
145
146

  Definition waiting (P : iProp) (I : gset gname) : iProp :=
147
148
    ( Ψ : gname  iProp, (P - Π★{set I} (λ i, Ψ i)) 
                             Π★{set I} (λ i, saved_prop_own i (Ψ i)))%I.
149
150

  Definition ress (I : gset gname) : iProp :=
151
    (Π★{set I} (λ i,  R, saved_prop_own i R  R))%I.
152

153
154
  Local Notation state_to_val s :=
    (match s with State Low _ => 0 | State High _ => 1 end).
155
  Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp :=
156
    (l  '(state_to_val s) 
157
158
     match s with State Low I' => waiting P I' | State High I' => ress I' end
    )%I.
159
160

  Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp :=
Ralf Jung's avatar
Ralf Jung committed
161
    (heap_ctx heapN  sts_ctx γ N (barrier_inv l P))%I.
162

163
164
165
166
167
168
169
  Global Instance barrier_ctx_ne n γ l : Proper (dist n ==> dist n) (barrier_ctx γ l).
  Proof.
    move=>? ? EQ. rewrite /barrier_ctx. apply sep_ne; first done. apply sts_ctx_ne.
    move=>[p I]. rewrite /barrier_inv. destruct p; last done.
    rewrite /waiting. by setoid_rewrite EQ.
  Qed.

170
  Definition send (l : loc) (P : iProp) : iProp :=
171
    ( γ, barrier_ctx γ l P  sts_ownS γ low_states {[ Send ]})%I.
172

173
174
175
176
177
  Global Instance send_ne n l : Proper (dist n ==> dist n) (send l).
  Proof. (* TODO: This really ought to be doable by an automatic tactic. it is just application of already regostered congruence lemmas. *)
    move=>? ? EQ. rewrite /send. apply exist_ne=>γ. by rewrite EQ.
  Qed.

178
  Definition recv (l : loc) (R : iProp) : iProp :=
179
    ( γ P Q i, barrier_ctx γ l P  sts_ownS γ (i_states i) {[ Change i ]} 
180
181
        saved_prop_own i Q  (Q - R))%I.

182
183
184
185
186
  Global Instance recv_ne n l : Proper (dist n ==> dist n) (recv l).
  Proof.
    move=>? ? EQ. rewrite /send. do 4 apply exist_ne=>?. by rewrite EQ.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
187
188
189
190
191
192
193
194
195
196
  Lemma waiting_split i i1 i2 Q R1 R2 P I :
    i  I  i1  I  i2  I  i1  i2 
    (saved_prop_own i2 R2  saved_prop_own i1 R1  saved_prop_own i Q 
     (Q - R1  R2)  waiting P I)
     waiting P ({[i1]}  ({[i2]}  (I  {[i]}))).
  Proof.
    intros. rewrite /waiting !sep_exist_l. apply exist_elim=>Ψ.
    rewrite -(exist_intro (<[i1:=R1]> (<[i2:=R2]> Ψ))).
    rewrite [(Π★{set _} (λ _, saved_prop_own _ _))%I](big_sepS_delete _ I i) //.
    rewrite !assoc [(_  (_ - _))%I]comm !assoc [(_   _)%I]comm.
Ralf Jung's avatar
Ralf Jung committed
197
    rewrite !assoc [(_  _ i _)%I]comm !assoc [(_  _ i _)%I]comm -!assoc.
198
199
    do 4 (rewrite big_sepS_insert; last set_solver).
    rewrite !fn_lookup_insert fn_lookup_insert_ne // !fn_lookup_insert.
Ralf Jung's avatar
Ralf Jung committed
200
201
202
203
    rewrite 3!assoc. apply sep_mono.
    - rewrite saved_prop_agree. u_strip_later.
      apply wand_intro_l. rewrite [(_  (_ - Π★{set _} _))%I]comm !assoc wand_elim_r.
      rewrite (big_sepS_delete _ I i) //.
204
      rewrite [(_  Π★{set _} _)%I]comm [(_  Π★{set _} _)%I]comm -!assoc.
Ralf Jung's avatar
Ralf Jung committed
205
206
207
208
209
210
      apply sep_mono.
      + apply big_sepS_mono; first done. intros j.
        rewrite elem_of_difference not_elem_of_singleton. intros.
        rewrite fn_lookup_insert_ne; last naive_solver.
        rewrite fn_lookup_insert_ne; last naive_solver.
        done.
211
      + rewrite !assoc.
Ralf Jung's avatar
Ralf Jung committed
212
213
214
        eapply wand_apply_r'; first done.
        apply: (eq_rewrite (Ψ i) Q (λ x, x)%I); last by eauto with I.
        rewrite eq_sym. eauto with I.
215
216
    - rewrite !assoc. apply sep_mono.
      + by rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
217
218
219
220
221
      + apply big_sepS_mono; first done. intros j.
        rewrite elem_of_difference not_elem_of_singleton. intros.
        rewrite fn_lookup_insert_ne; last naive_solver.
        rewrite fn_lookup_insert_ne; last naive_solver.
        done.
Ralf Jung's avatar
Ralf Jung committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
  Qed. 

  Lemma ress_split i i1 i2 Q R1 R2 I :
    i  I  i1  I  i2  I  i1  i2 
    (saved_prop_own i2 R2  saved_prop_own i1 R1  saved_prop_own i Q 
     (Q - R1  R2)  ress I)
     ress ({[i1]}  ({[i2]}  (I  {[i]}))).
  Proof.
    intros. rewrite /ress.
    rewrite [(Π★{set _} _)%I](big_sepS_delete _ I i) // !assoc !sep_exist_l !sep_exist_r.
    apply exist_elim=>R.
    rewrite big_sepS_insert; last set_solver.
    rewrite big_sepS_insert; last set_solver.
    rewrite -(exist_intro R1) -(exist_intro R2) [(_ i2 _  _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !assoc. apply sep_mono_l.
    rewrite [( _  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  _ i R)%I]comm !assoc saved_prop_agree.
    rewrite [( _  _)%I]comm -!assoc. eapply wand_apply_l.
    { rewrite <-later_wand, <-later_intro. done. }
    { by rewrite later_sep. }
    u_strip_later.
    apply: (eq_rewrite R Q (λ x, x)%I); eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
245

246
247
  Lemma newchan_spec (P : iProp) (Φ : val  iProp) :
    (heap_ctx heapN   l, recv l P  send l P - Φ (LocV l))
248
     || newchan '() {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
249
  Proof.
250
    rewrite /newchan. wp_seq.
251
    rewrite -wp_pvs. wp eapply wp_alloc; eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
252
253
254
255
256
257
258
    apply forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
    rewrite !assoc. apply pvs_wand_r.
    (* The core of this proof: Allocating the STS and the saved prop. *)
    eapply sep_elim_True_r.
    { by eapply (saved_prop_alloc _ P). }
    rewrite pvs_frame_l. apply pvs_strip_pvs. rewrite sep_exist_l.
    apply exist_elim=>i.
259
    trans (pvs   (heap_ctx heapN   (barrier_inv l P (State Low {[ i ]}))   saved_prop_own i P)).
Ralf Jung's avatar
Ralf Jung committed
260
261
262
263
264
265
    - rewrite -pvs_intro. rewrite [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
      rewrite {1}[saved_prop_own _ _]always_sep_dup !assoc. apply sep_mono_l.
      rewrite /barrier_inv /waiting -later_intro. apply sep_mono_r.
      rewrite -(exist_intro (const P)) /=. rewrite -[saved_prop_own _ _](left_id True%I ()%I).
      apply sep_mono.
      + rewrite -later_intro. apply wand_intro_l. rewrite right_id.
Ralf Jung's avatar
Ralf Jung committed
266
267
        by rewrite big_sepS_singleton.
      + by rewrite big_sepS_singleton.
Ralf Jung's avatar
Ralf Jung committed
268
269
270
271
    - rewrite (sts_alloc (barrier_inv l P)  N); last by eauto.
      rewrite !pvs_frame_r !pvs_frame_l. 
      rewrite pvs_trans'. apply pvs_strip_pvs. rewrite sep_exist_r sep_exist_l.
      apply exist_elim=>γ.
Ralf Jung's avatar
Ralf Jung committed
272
273
274
275
      (* TODO: The record notation is rather annoying here *)
      rewrite /recv /send. rewrite -(exist_intro γ) -(exist_intro P).
      rewrite -(exist_intro P) -(exist_intro i) -(exist_intro γ).
      (* This is even more annoying than usually, since rewrite sometimes unfolds stuff... *)
Ralf Jung's avatar
Ralf Jung committed
276
      rewrite [barrier_ctx _ _ _]lock !assoc [(_ locked _)%I]comm !assoc -lock.
Ralf Jung's avatar
Ralf Jung committed
277
      rewrite -always_sep_dup.
Ralf Jung's avatar
Ralf Jung committed
278
279
      rewrite [barrier_ctx _ _ _]lock always_and_sep_l -!assoc assoc -lock.
      rewrite -pvs_frame_l. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
280
281
      rewrite [(saved_prop_own _ _  _)%I]comm !assoc. rewrite -pvs_frame_r.
      apply sep_mono_l.
Ralf Jung's avatar
Ralf Jung committed
282
283
284
      rewrite -assoc [( _  _)%I]comm assoc -pvs_frame_r.
      eapply sep_elim_True_r; last eapply sep_mono_l.
      { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
285
286
      rewrite (sts_own_weaken  _ _ (i_states i  low_states) _ 
                              ({[ Change i ]}  {[ Send ]})).
287
      + apply pvs_mono. rewrite sts_ownS_op; eauto with sts.
288
289
290
291
      + rewrite /= /tok /=  =>t. rewrite !mkSet_elem_of.
        move=>[[?]|?]; set_solver. 
      + eauto with sts.
      + eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
292
  Qed.
Ralf Jung's avatar
Ralf Jung committed
293

294
  Lemma signal_spec l P (Φ : val  iProp) :
295
    heapN  N  (send l P  P  Φ '())  || signal (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
296
  Proof.
297
    intros Hdisj. rewrite /signal /send /barrier_ctx. rewrite sep_exist_r.
298
    apply exist_elim=>γ. wp_let.
Ralf Jung's avatar
Ralf Jung committed
299
    (* I think some evars here are better than repeating *everything* *)
300
301
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
302
    rewrite [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
303
304
305
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
    apply const_elim_sep_l=>Hs. destruct p; last done.
    rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep.
306
307
    eapply wp_store; eauto with I ndisj. 
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
308
    apply wand_intro_l. rewrite -(exist_intro (State High I)).
309
    rewrite -(exist_intro ). rewrite const_equiv /=; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
310
311
312
313
    rewrite left_id -later_intro {2}/barrier_inv -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  P)%I]comm !assoc -2!assoc.
    apply sep_mono; last first.
    { apply wand_intro_l. eauto with I. }
Ralf Jung's avatar
Ralf Jung committed
314
    (* Now we come to the core of the proof: Updating from waiting to ress. *)
315
    rewrite /waiting /ress sep_exist_l. apply exist_elim=>{Φ} Φ.
Ralf Jung's avatar
Ralf Jung committed
316
    rewrite later_wand {1}(later_intro P) !assoc wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
    rewrite big_sepS_later -big_sepS_sepS. apply big_sepS_mono'=>i.
318
    rewrite -(exist_intro (Φ i)) comm. done.
Ralf Jung's avatar
Ralf Jung committed
319
  Qed.
Ralf Jung's avatar
Ralf Jung committed
320

321
  Lemma wait_spec l P (Φ : val  iProp) :
322
    heapN  N  (recv l P  (P - Φ '()))  || wait (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
323
  Proof.
Ralf Jung's avatar
Ralf Jung committed
324
    rename P into R. intros Hdisj. wp_rec.
Ralf Jung's avatar
Ralf Jung committed
325
326
327
    rewrite {1}/recv /barrier_ctx. rewrite !sep_exist_r.
    apply exist_elim=>γ. rewrite !sep_exist_r. apply exist_elim=>P.
    rewrite !sep_exist_r. apply exist_elim=>Q. rewrite !sep_exist_r.
Ralf Jung's avatar
Ralf Jung committed
328
    apply exist_elim=>i. wp_focus (! _)%L.
Ralf Jung's avatar
Ralf Jung committed
329
330
331
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
332
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
333
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
334
335
336
    apply const_elim_sep_l=>Hs.
    rewrite {1}/barrier_inv =>/=. rewrite later_sep.
    eapply wp_load; eauto with I ndisj.
337
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
338
339
340
341
342
343
    apply wand_intro_l. destruct p.
    { (* a Low state. The comparison fails, and we recurse. *)
      rewrite -(exist_intro (State Low I)) -(exist_intro {[ Change i ]}).
      rewrite const_equiv /=; last by apply rtc_refl.
      rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {3}/barrier_inv.
      rewrite -!assoc. apply sep_mono_r, sep_mono_r, wand_intro_l.
344
      wp_op; first done. intros _. wp_if. rewrite !assoc.
345
      rewrite -always_wand_impl always_elim.
Ralf Jung's avatar
Ralf Jung committed
346
      rewrite -{2}pvs_wp. apply pvs_wand_r.
Ralf Jung's avatar
Ralf Jung committed
347
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro Q) -(exist_intro i).
348
349
      rewrite !assoc.
      do 3 (rewrite -pvs_frame_r; apply sep_mono; last (try apply later_intro; reflexivity)).
Ralf Jung's avatar
Ralf Jung committed
350
351
      rewrite [(_  heap_ctx _)%I]comm -!assoc -pvs_frame_l. apply sep_mono_r.
      rewrite comm -pvs_frame_l. apply sep_mono_r.
352
      apply sts_ownS_weaken; eauto using sts.up_subseteq with sts. }
Ralf Jung's avatar
Ralf Jung committed
353
354
    (* a High state: the comparison succeeds, and we perform a transition and
       return to the client *)
355
    rewrite [(_   (_  _ ))%I]sep_elim_l.
Ralf Jung's avatar
Ralf Jung committed
356
357
    rewrite -(exist_intro (State High (I  {[ i ]}))) -(exist_intro ).
    change (i  I) in Hs.
358
    rewrite const_equiv /=; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
359
360
361
362
363
364
365
    rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {2}/barrier_inv.
    rewrite -!assoc. apply sep_mono_r. rewrite /ress.
    rewrite (big_sepS_delete _ I i) // [(_  Π★{set _} _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !sep_exist_r. apply exist_elim=>Q'.
    apply wand_intro_l. rewrite [(heap_ctx _  _)%I]sep_elim_r.
    rewrite [(sts_own _ _ _  _)%I]sep_elim_r [(sts_ctx _ _ _  _)%I]sep_elim_r.
    rewrite !assoc [(_  saved_prop_own i Q)%I]comm !assoc saved_prop_agree.
366
    wp_op>; last done. intros _. u_strip_later.
367
    wp_if. 
Ralf Jung's avatar
Ralf Jung committed
368
369
370
371
    eapply wand_apply_r; [done..|]. eapply wand_apply_r; [done..|].
    apply: (eq_rewrite Q' Q (λ x, x)%I); last by eauto with I.
    rewrite eq_sym. eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
372

Ralf Jung's avatar
Ralf Jung committed
373
  Lemma recv_split l P1 P2 Φ :
374
    (recv l (P1  P2)  (recv l P1  recv l P2 - Φ '()))  || Skip {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
375
  Proof.
Ralf Jung's avatar
Ralf Jung committed
376
377
378
379
    rename P1 into R1. rename P2 into R2.
    rewrite {1}/recv /barrier_ctx. rewrite sep_exist_r.
    apply exist_elim=>γ. rewrite sep_exist_r.  apply exist_elim=>P. 
    rewrite sep_exist_r.  apply exist_elim=>Q. rewrite sep_exist_r.
Ralf Jung's avatar
Ralf Jung committed
380
    apply exist_elim=>i. rewrite -wp_pvs.
Ralf Jung's avatar
Ralf Jung committed
381
382
383
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
384
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
385
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    apply const_elim_sep_l=>Hs. rewrite -wp_pvs. wp_seq.
    eapply sep_elim_True_l.
    { eapply saved_prop_alloc_strong with (P0 := R1) (G := I). }
    rewrite pvs_frame_r. apply pvs_strip_pvs. rewrite sep_exist_r.
    apply exist_elim=>i1. rewrite always_and_sep_l. rewrite -assoc.
    apply const_elim_sep_l=>Hi1. eapply sep_elim_True_l.
    { eapply saved_prop_alloc_strong with (P0 := R2) (G := I  {[ i1 ]}). }
    rewrite pvs_frame_r. apply pvs_mono. rewrite sep_exist_r.
    apply exist_elim=>i2. rewrite always_and_sep_l. rewrite -assoc.
    apply const_elim_sep_l=>Hi2.
    rewrite ->not_elem_of_union, elem_of_singleton in Hi2.
    destruct Hi2 as [Hi2 Hi12]. change (i  I) in Hs. destruct p.
    (* Case I: Low state. *)
    - rewrite -(exist_intro (State Low ({[i1]}  ({[i2]}  (I  {[i]}))))).
      rewrite -(exist_intro ({[Change i1 ]}  {[ Change i2 ]})).
401
      rewrite const_equiv; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
402
403
404
405
406
407
      rewrite left_id -later_intro {1 3}/barrier_inv.
      (* FIXME ssreflect rewrite fails if there are evars around. Also, this is very slow because we don't have a proof mode. *)
      rewrite -(waiting_split _ _ _ Q R1 R2); [|done..].
      match goal with | |- _  ?G => rewrite [G]lock end.
      rewrite {1}[saved_prop_own i1 _]always_sep_dup.
      rewrite {1}[saved_prop_own i2 _]always_sep_dup.
Ralf Jung's avatar
Ralf Jung committed
408
409
      rewrite !assoc [(_  _ i1 _)%I]comm.
      rewrite !assoc [(_  _ i _)%I]comm.
Ralf Jung's avatar
Ralf Jung committed
410
411
412
413
414
415
      rewrite !assoc [(_  (l  _))%I]comm.
      rewrite !assoc [(_  (waiting _ _))%I]comm.
      rewrite !assoc [(_  (Q - _))%I]comm -!assoc 5!assoc.
      unlock. apply sep_mono.
      + (* This should really all be handled automatically. *)
        rewrite !assoc [(_  (l  _))%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
416
417
418
        rewrite !assoc [(_  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i1 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
419
420
421
422
423
424
425
        done.
      + apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
        do 2 rewrite !(assoc ()%I) [(_  sts_ownS _ _ _)%I]comm.
        rewrite -!assoc. rewrite [(sts_ownS _ _ _  _  _)%I]assoc -pvs_frame_r.
        apply sep_mono.
426
        * rewrite -sts_ownS_op; by eauto using sts_own_weaken with sts.
Ralf Jung's avatar
Ralf Jung committed
427
428
429
430
431
432
433
434
        * rewrite {1}[heap_ctx _]always_sep_dup !assoc [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
          rewrite !assoc ![(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
          rewrite {1}[sts_ctx _ _ _]always_sep_dup !assoc [(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite !assoc ![(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite comm. apply sep_mono_r. apply sep_intro_True_l.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
          apply sep_intro_True_r; first done.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
435
(* Case II: High state. TODO: Lots of this script is just copy-n-paste of the previous one.
436
437
   Most of that is because the goals are fairly similar in structure, and the proof scripts
   are mostly concerned with manually managaing the structure (assoc, comm, dup) of
Ralf Jung's avatar
Ralf Jung committed
438
439
440
   the context. *)
    - rewrite -(exist_intro (State High ({[i1]}  ({[i2]}  (I  {[i]}))))).
      rewrite -(exist_intro ({[Change i1 ]}  {[ Change i2 ]})).
441
      rewrite const_equiv; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
      rewrite left_id -later_intro {1 3}/barrier_inv.
      rewrite -(ress_split _ _ _ Q R1 R2); [|done..].
      match goal with | |- _  ?G => rewrite [G]lock end.
      rewrite {1}[saved_prop_own i1 _]always_sep_dup.
      rewrite {1}[saved_prop_own i2 _]always_sep_dup.
      rewrite !assoc [(_  _ i1 _)%I]comm.
      rewrite !assoc [(_  _ i _)%I]comm.
      rewrite !assoc [(_  (l  _))%I]comm.
      rewrite !assoc [(_  (ress _))%I]comm.
      rewrite !assoc [(_  (Q - _))%I]comm -!assoc 5!assoc.
      unlock. apply sep_mono.
      + (* This should really all be handled automatically. *)
        rewrite !assoc [(_  (l  _))%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i1 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i _)%I]comm -!assoc. apply sep_mono_r.
        done.
      + apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
        do 2 rewrite !(assoc ()%I) [(_  sts_ownS _ _ _)%I]comm.
        rewrite -!assoc. rewrite [(sts_ownS _ _ _  _  _)%I]assoc -pvs_frame_r.
        apply sep_mono.
465
        * rewrite -sts_ownS_op; by eauto using sts_own_weaken with sts.
Ralf Jung's avatar
Ralf Jung committed
466
467
468
469
470
471
472
473
474
        * rewrite {1}[heap_ctx _]always_sep_dup !assoc [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
          rewrite !assoc ![(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
          rewrite {1}[sts_ctx _ _ _]always_sep_dup !assoc [(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite !assoc ![(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite comm. apply sep_mono_r. apply sep_intro_True_l.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
          apply sep_intro_True_r; first done.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
  Qed.
Ralf Jung's avatar
Ralf Jung committed
475
476
477
478

  Lemma recv_strengthen l P1 P2 :
    (P1 - P2)  (recv l P1 - recv l P2).
  Proof.
Ralf Jung's avatar
Ralf Jung committed
479
480
481
482
483
484
485
    apply wand_intro_l. rewrite /recv. rewrite sep_exist_r. apply exist_mono=>γ.
    rewrite sep_exist_r. apply exist_mono=>P. rewrite sep_exist_r.
    apply exist_mono=>Q. rewrite sep_exist_r. apply exist_mono=>i.
    rewrite -!assoc. apply sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r.
    rewrite (later_intro (P1 - _)%I) -later_sep. apply later_mono.
    apply wand_intro_l. rewrite !assoc wand_elim_r wand_elim_r. done.
  Qed.
486
487

End proof.
488
489
490
491
492
493
494
495
496
497
498
499
500

Section spec.
  Context {Σ : iFunctorG}.
  Context `{heapG Σ}.
  Context `{stsG heap_lang Σ barrier_proto.sts}.
  Context `{savedPropG heap_lang Σ}.

  Local Notation iProp := (iPropG heap_lang Σ).

  (* TODO: Maybe notation for LocV (and Loc)? *)
  Lemma barrier_spec (heapN N : namespace) :
    heapN  N 
     (recv send : loc -> iProp -n> iProp),
501
502
503
504
      ( P, heap_ctx heapN  ({{ True }} newchan '() {{ λ v,  l, v = LocV l  recv l P  send l P }})) 
      ( l P, {{ send l P  P }} signal (LocV l) {{ λ _, True }}) 
      ( l P, {{ recv l P }} wait (LocV l) {{ λ _, P }}) 
      ( l P Q, {{ recv l (P  Q) }} Skip {{ λ _, recv l P  recv l Q }}) 
505
506
507
      ( l P Q, (P - Q)  (recv l P - recv l Q)).
  Proof.
    intros HN. exists (λ l, CofeMor (recv N heapN l)). exists (λ l, CofeMor (send N heapN l)).
508
    split_and?; cbn.
509
510
511
512
    - intros. apply: always_intro. apply impl_intro_l. rewrite -newchan_spec.
      rewrite comm always_and_sep_r. apply sep_mono_r. apply forall_intro=>l.
      apply wand_intro_l. rewrite right_id -(exist_intro l) const_equiv // left_id.
      done.
Ralf Jung's avatar
Ralf Jung committed
513
514
515
516
    - intros. apply ht_alt. rewrite -signal_spec; last done.
        by rewrite right_id.
    - intros. apply ht_alt. rewrite -wait_spec; last done.
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
Ralf Jung's avatar
Ralf Jung committed
517
518
    - intros. apply ht_alt. rewrite -recv_split.
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
519
    - intros. apply recv_strengthen.
Ralf Jung's avatar
Ralf Jung committed
520
  Qed.
521
522

End spec.