collections.v 28.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From prelude Require Export base tactics orders.
7
From prelude Require Import sets.
Robbert Krebbers's avatar
Robbert Krebbers committed
8 9 10 11 12 13 14

Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

(** * Basic theorems *)
Section simple_collection.
  Context `{SimpleCollection A C}.
15 16
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20 21 22 23 24 25 26 27

  Lemma elem_of_empty x : x    False.
  Proof. split. apply not_elem_of_empty. done. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
52 53
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
  Qed.
55
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  Proof. by repeat intro; subst. Qed.
57 58
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
59 60 61 62
  Proof. intros ???; subst. firstorder. Qed.
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
  Proof.
    split.
63
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
Robbert Krebbers's avatar
Robbert Krebbers committed
64
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
65
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
Robbert Krebbers's avatar
Robbert Krebbers committed
66 67
      intros. apply elem_of_union_r; auto.
  Qed.
68
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
Robbert Krebbers's avatar
Robbert Krebbers committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
End simple_collection.

Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
  match x with None =>  | Some a => {[ a ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) o : x  of_option o  o = Some x.
  Proof.
    destruct o; simpl;
      rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
  Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
117
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
118
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
119
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  Qed.
End of_option_list.

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.

(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
157 158 159
  | _   => clear H
  | _  {[ _ | _ ]} => rewrite elem_of_mkSet in H
  | ¬_  {[ _ | _ ]} => rewrite not_elem_of_mkSet in H
Robbert Krebbers's avatar
Robbert Krebbers committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
  | ?x  {[ ?y ]} =>
    apply not_elem_of_singleton in H
  | _  _  _ =>
    apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
    apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
  | _  _ = _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | _  guard _; _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
  | _  of_list _ => apply elem_of_of_list in H
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

Ltac decompose_empty := repeat
  match goal with
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
  end.

(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
214
Ltac set_unfold :=
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217 218 219 220 221 222 223
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
    | context [ _  _ ] => setoid_rewrite subset_spec in H
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
    | context [ _   ] => setoid_rewrite elem_of_empty in H
224
    | context [ _   ] => setoid_rewrite elem_of_all in H
Robbert Krebbers's avatar
Robbert Krebbers committed
225
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
226
    | context [ _  {[_| _ ]} ] => setoid_rewrite elem_of_mkSet in H; simpl in H
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
    | context [ _  of_option _ ] => setoid_rewrite elem_of_of_option in H
    | context [ _  of_list _ ] => setoid_rewrite elem_of_of_list in H
    end);
  repeat match goal with
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
  | |- context [ _  _ ] => setoid_rewrite subset_spec
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
  | |- context [ _   ] => setoid_rewrite elem_of_empty
246
  | |- context [ _   ] => setoid_rewrite elem_of_all
Robbert Krebbers's avatar
Robbert Krebbers committed
247
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
248
  | |- context [ _  {[ _ | _ ]} ] => setoid_rewrite elem_of_mkSet; simpl
Robbert Krebbers's avatar
Robbert Krebbers committed
249 250 251 252 253 254 255 256 257 258 259 260
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
  | |- context [ _  of_option _ ] => setoid_rewrite elem_of_of_option
  | |- context [ _  of_list _ ] => setoid_rewrite elem_of_of_list
  end.

261
(** Since [firstorder] fails or loops on very small goals generated by
262
[set_solver] already. We use the [naive_solver] tactic as a substitute.
263
This tactic either fails or proves the goal. *)
264
Tactic Notation "set_solver" "by" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
265 266
  setoid_subst;
  decompose_empty;
267
  set_unfold;
Robbert Krebbers's avatar
Robbert Krebbers committed
268
  naive_solver tac.
269 270 271 272 273
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
274
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
275
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.
276

Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279
(** * More theorems *)
Section collection.
  Context `{Collection A C}.
280
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
281 282

  Global Instance: Lattice C.
283
  Proof. split. apply _. firstorder auto. set_solver. Qed.
284 285
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
286 287 288 289
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
290
  Lemma non_empty_inhabited x X : x  X  X  .
291
  Proof. set_solver. Qed.
292
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
293
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
294
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
295
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
297
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
  Lemma difference_diag X : X  X  .
299
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
301
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
303
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
305
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
307
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
326 327
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
328 329 330
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
331
    Context `{ (x : A) (X : C), Decision (x  X)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
332 333 334 335 336 337 338 339 340 341 342 343
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
344
      destruct (decide (x  X)); set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
345 346
    Qed.
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
347
    Proof. intros ? x ?; apply dec_stable; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
366
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
369
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
370
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
371
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373 374 375 376 377 378 379 380
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
381
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
End collection_ops.

(** * Sets without duplicates up to an equivalence *)
Section NoDup.
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
399 400
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
401 402 403 404 405
  Qed.
  Global Instance: Proper (() ==> iff) set_NoDup.
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
406
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
408
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
410
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
411 412 413

  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
414
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
416
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418

  Lemma set_NoDup_empty: set_NoDup .
419
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
420 421
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
422
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
423 424 425 426
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
  Proof.
    intros Hin Hnodup [y [??]].
427
    rewrite (Hnodup x y) in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
428 429
  Qed.
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
430
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
432
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
433 434 435 436 437 438 439 440 441 442
End NoDup.

(** * Quantifiers *)
Section quantifiers.
  Context `{SimpleCollection A B} (P : A  Prop).

  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
443
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
444
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
445
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
447
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
448
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
449
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
451
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
452 453

  Lemma set_Exists_empty : ¬set_Exists .
454
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
456
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
458
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
460
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
463
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
End quantifiers.

Section more_quantifiers.
  Context `{SimpleCollection A B}.

  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.

(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).

Section fresh.
  Context `{FreshSpec A C}.
493
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
494

495
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
496
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
497 498
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
499
  Proof.
500
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
Robbert Krebbers's avatar
Robbert Krebbers committed
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    apply IH. by rewrite E.
  Qed.

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
520
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
521 522 523 524 525 526 527

  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
  Proof.
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
528
    apply IH in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
529 530 531 532
  Qed.
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
  Proof.
    revert X. induction n; simpl; constructor; auto.
533
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
534 535 536 537 538 539 540 541 542 543 544
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
  Qed.
End fresh.

(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
  Context `{CollectionMonad M}.

545 546
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
547
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
548 549
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
550
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
551 552
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
553
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
554 555
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
556
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
557 558
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
559
  Proof. intros X Y ?; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
562
  Proof. intros X Y [??]; split; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564

  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
565
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
567
  Proof. set_solver. Qed.
568
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
569
    g  f <$> X  g <$> (f <$> X).
570
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
571 572
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
573
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
574 575
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
576
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577 578
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
579
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
580 581 582 583 584

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
585
    - revert l. induction k; set_solver by eauto.
586
    - induction 1; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
587 588 589
  Qed.
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
    l  mapM f k  length l = length k.
590
  Proof. revert l; induction k; set_solver by eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
591 592 593 594
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
  Proof.
    intros Hl. revert k. induction Hl; simpl; intros;
595
      decompose_elem_of; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
596 597 598 599 600 601 602 603 604 605 606 607
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
End collection_monad.
608 609 610 611 612 613

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
614 615
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
616
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
617 618
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
619 620 621
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
622
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
623 624 625 626 627 628
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
629
  Proof. intros [l ?]; exists l; set_solver. Qed.
630
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
631
  Proof. intros [l ?]; exists l; set_solver. Qed.
632 633 634 635 636
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
637
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
638
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
639
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
640
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
641
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
642 643 644 645
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
646
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
647
  Qed.
648
End more_finite.