classes.v 14.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.bi Require Export bi.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3
4
5
Import bi.

Class FromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
6
  from_assumption : ?p P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
Arguments FromAssumption {_} _ _%I _%I : simpl never.
Arguments from_assumption {_} _ _%I _%I {_}.
(* No need to restrict Hint Mode, we have a default instance that will always
10
11
be used in case of evars *)
Hint Mode FromAssumption + + - - : typeclass_instances.
12

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
15
16
Class IntoPure {PROP : bi} (P : PROP) (φ : Prop) :=
  into_pure : P  ⌜φ⌝.
Arguments IntoPure {_} _%I _%type_scope : simpl never.
Arguments into_pure {_} _%I _%type_scope {_}.
17
18
Hint Mode IntoPure + ! - : typeclass_instances.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
(* [IntoPureT] is a variant of [IntoPure] with the argument in [Type] to avoid
some shortcoming of unification in Coq's type class search. An example where we
use this workaround is to repair the following instance:

  Global Instance into_exist_and_pure P Q (φ : Prop) :
    IntoPure P φ → IntoExist (P ∧ Q) (λ _ : φ, Q).

Coq is unable to use this instance: [class_apply] -- which is used by type class
search -- fails with the error that it cannot unify [Prop] and [Type]. This is
probably caused because [class_apply] uses an ancient unification algorith. The
[refine] tactic -- which uses a better unification algorithm -- succeeds to
apply the above instance.

Since we do not want to define [Hint Extern] declarations using [refine] for
any instance like [into_exist_and_pure], we factor this out in the class
[IntoPureT]. This way, we only have to declare a [Hint Extern] using [refine]
once, and use [IntoPureT] in any instance like [into_exist_and_pure].

TODO: Report this as a Coq bug, or wait for https://github.com/coq/coq/pull/991
to be finished and merged someday. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
39
Class IntoPureT {PROP : bi} (P : PROP) (φ : Type) :=
40
  into_pureT :  ψ : Prop, φ = ψ  IntoPure P ψ.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
Lemma into_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : IntoPure P φ  IntoPureT P φ.
42
43
44
45
Proof. by exists φ. Qed.
Hint Extern 0 (IntoPureT _ _) =>
  notypeclasses refine (into_pureT_hint _ _ _) : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
48
49
Class FromPure {PROP : bi} (P : PROP) (φ : Prop) :=
  from_pure : ⌜φ⌝  P.
Arguments FromPure {_} _%I _%type_scope : simpl never.
Arguments from_pure {_} _%I _%type_scope {_}.
50
51
Hint Mode FromPure + ! - : typeclass_instances.

52
Class FromPureT {PROP : bi} (P : PROP) (φ : Type) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
53
  from_pureT :  ψ : Prop, φ = ψ  FromPure P ψ.
54
Lemma from_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : FromPure P φ  FromPureT P φ.
Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
57
58
Proof. by exists φ. Qed.
Hint Extern 0 (FromPureT _ _) =>
  notypeclasses refine (from_pureT_hint _ _ _) : typeclass_instances.

59
Class IntoInternalEq {PROP : bi} {A : ofeT} (P : PROP) (x y : A) :=
60
  into_internal_eq : P  x  y.
61
62
Arguments IntoInternalEq {_ _} _%I _%type_scope _%type_scope : simpl never.
Arguments into_internal_eq {_ _} _%I _%type_scope _%type_scope {_}.
63
64
Hint Mode IntoInternalEq + - ! - - : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
65
Class IntoPersistent {PROP : bi} (p : bool) (P Q : PROP) :=
66
  into_persistent : bi_persistently_if p P  bi_persistently Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
Arguments IntoPersistent {_} _ _%I _%I : simpl never.
Arguments into_persistent {_} _ _%I _%I {_}.
69
Hint Mode IntoPersistent + + ! - : typeclass_instances.
70

71
72
73
74
75
Class FromAlways {PROP : bi} (a pe pl : bool) (P Q : PROP) :=
  from_always : bi_affinely_if a (bi_persistently_if pe (bi_plainly_if pl Q))  P.
Arguments FromAlways {_} _ _ _ _%I _%I : simpl never.
Arguments from_always {_} _ _ _ _%I _%I {_}.
Hint Mode FromAlways + - - - ! - : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77
78
79
80
81
82
Class FromAffinely {PROP : bi} (P Q : PROP) :=
  from_affinely : bi_affinely Q  P.
Arguments FromAffinely {_} _%I _%type_scope : simpl never.
Arguments from_affinely {_} _%I _%type_scope {_}.
Hint Mode FromAffinely + ! - : typeclass_instances.
Hint Mode FromAffinely + - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
83

84
85
Class IntoAbsorbingly {PROP : bi} (P Q : PROP) :=
  into_absorbingly : P  bi_absorbingly Q.
86
87
88
89
Arguments IntoAbsorbingly {_} _%I _%I.
Arguments into_absorbingly {_} _%I _%I {_}.
Hint Mode IntoAbsorbingly + ! -  : typeclass_instances.
Hint Mode IntoAbsorbingly + - ! : typeclass_instances.
90

Robbert Krebbers's avatar
Robbert Krebbers committed
91
92
93
94
95
96
97
98
99
(*
Converting an assumption [R] into a wand [P -∗ Q] is done in three stages:

- Strip modalities and universal quantifiers of [R] until an arrow or a wand
  has been obtained.
- Balance modalities in the arguments [P] and [Q] to match the goal (which used
  for [iApply]) or the premise (when used with [iSpecialize] and a specific
  hypothesis).
- Instantiate the premise of the wand or implication.
100
*)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Class IntoWand {PROP : bi} (p q : bool) (R P Q : PROP) :=
102
  into_wand : ?p R  ?q P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Arguments IntoWand {_} _ _ _%I _%I _%I : simpl never.
Arguments into_wand {_} _ _ _%I _%I _%I {_}.
Hint Mode IntoWand + + + ! - - : typeclass_instances.

Class IntoWand' {PROP : bi} (p q : bool) (R P Q : PROP) :=
  into_wand' : IntoWand p q R P Q.
Arguments IntoWand' {_} _ _ _%I _%I _%I : simpl never.
Hint Mode IntoWand' + + + ! ! - : typeclass_instances.
Hint Mode IntoWand' + + + ! - ! : typeclass_instances.

Instance into_wand_wand' {PROP : bi} p q (P Q P' Q' : PROP) :
  IntoWand' p q (P - Q) P' Q'  IntoWand p q (P - Q) P' Q' | 100.
Proof. done. Qed.
Instance into_wand_impl' {PROP : bi} p q (P Q P' Q' : PROP) :
  IntoWand' p q (P  Q) P' Q'  IntoWand p q (P  Q) P' Q' | 100.
Proof. done. Qed.
119

Robbert Krebbers's avatar
Robbert Krebbers committed
120
121
122
123
124
125
126
127
128
129
130
131
132
Class FromSep {PROP : bi} (P Q1 Q2 : PROP) := from_sep : Q1  Q2  P.
Arguments FromSep {_} _%I _%I _%I : simpl never.
Arguments from_sep {_} _%I _%I _%I {_}.
Hint Mode FromSep + ! - - : typeclass_instances.
Hint Mode FromSep + - ! ! : typeclass_instances. (* For iCombine *)

Class FromAnd {PROP : bi} (P Q1 Q2 : PROP) := from_and : Q1  Q2  P.
Arguments FromAnd {_} _%I _%I _%I : simpl never.
Arguments from_and {_} _%I _%I _%I {_}.
Hint Mode FromAnd + ! - - : typeclass_instances.
Hint Mode FromAnd + - ! ! : typeclass_instances. (* For iCombine *)

Class IntoAnd {PROP : bi} (p : bool) (P Q1 Q2 : PROP) :=
133
  into_and : ?p P  ?p (Q1  Q2).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
Arguments IntoAnd {_} _ _%I _%I _%I : simpl never.
Arguments into_and {_} _ _%I _%I _%I {_}.
136
Hint Mode IntoAnd + + ! - - : typeclass_instances.
137

138
139
140
141
142
Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) :=
  into_sep : P  Q1  Q2.
Arguments IntoSep {_} _%I _%I _%I : simpl never.
Arguments into_sep {_} _%I _%I _%I {_}.
Hint Mode IntoSep + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!    
Robbert Krebbers committed
143

Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
Class FromOr {PROP : bi} (P Q1 Q2 : PROP) := from_or : Q1  Q2  P.
Arguments FromOr {_} _%I _%I _%I : simpl never.
Arguments from_or {_} _%I _%I _%I {_}.
147
Hint Mode FromOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!    
Robbert Krebbers committed
148

Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
151
Class IntoOr {PROP : bi} (P Q1 Q2 : PROP) := into_or : P  Q1  Q2.
Arguments IntoOr {_} _%I _%I _%I : simpl never.
Arguments into_or {_} _%I _%I _%I {_}.
152
Hint Mode IntoOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!    
Robbert Krebbers committed
153

Robbert Krebbers's avatar
Robbert Krebbers committed
154
Class FromExist {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
Robbert Krebbers's avatar
Oops!    
Robbert Krebbers committed
155
  from_exist : ( x, Φ x)  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
Arguments FromExist {_ _} _%I _%I : simpl never.
Arguments from_exist {_ _} _%I _%I {_}.
158
Hint Mode FromExist + - ! - : typeclass_instances.
Robbert Krebbers's avatar
Oops!    
Robbert Krebbers committed
159

Robbert Krebbers's avatar
Robbert Krebbers committed
160
Class IntoExist {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
Robbert Krebbers's avatar
Oops!    
Robbert Krebbers committed
161
  into_exist : P   x, Φ x.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
Arguments IntoExist {_ _} _%I _%I : simpl never.
Arguments into_exist {_ _} _%I _%I {_}.
164
Hint Mode IntoExist + - ! - : typeclass_instances.
165

Robbert Krebbers's avatar
Robbert Krebbers committed
166
Class IntoForall {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
167
  into_forall : P   x, Φ x.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169
Arguments IntoForall {_ _} _%I _%I : simpl never.
Arguments into_forall {_ _} _%I _%I {_}.
170
171
Hint Mode IntoForall + - ! - : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
172
Class FromForall {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
173
174
175
176
  from_forall : ( x, Φ x)  P.
Arguments from_forall {_ _} _ _ {_}.
Hint Mode FromForall + - ! - : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
179
180
181
182
183
184
Class IsExcept0 {PROP : sbi} (Q : PROP) := is_except_0 :  Q  Q.
Arguments IsExcept0 {_} _%I : simpl never.
Arguments is_except_0 {_} _%I {_}.
Hint Mode IsExcept0 + ! : typeclass_instances.

Class FromModal {PROP : bi} (P Q : PROP) := from_modal : Q  P.
Arguments FromModal {_} _%I _%I : simpl never.
Arguments from_modal {_} _%I _%I {_}.
185
Hint Mode FromModal + ! - : typeclass_instances.
186

Robbert Krebbers's avatar
Robbert Krebbers committed
187
Class ElimModal {PROP : bi} (P P' : PROP) (Q Q' : PROP) :=
188
  elim_modal : P  (P' - Q')  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
190
Arguments ElimModal {_} _%I _%I _%I _%I : simpl never.
Arguments elim_modal {_} _%I _%I _%I _%I {_}.
191
Hint Mode ElimModal + ! - ! - : typeclass_instances.
192

193
194
(* Used by the specialization pattern [ > ] in [iSpecialize] and [iAssert] to
add a modality to the goal corresponding to a premise/asserted proposition. *)
195
Class AddModal {PROP : bi} (P P' : PROP) (Q : PROP) :=
196
  add_modal : P  (P' - Q)  Q.
197
198
Arguments AddModal {_} _%I _%I _%I : simpl never.
Arguments add_modal {_} _%I _%I _%I {_}.
199
200
Hint Mode AddModal + - ! ! : typeclass_instances.

201
Lemma add_modal_id {PROP : bi} (P Q : PROP) : AddModal P P Q.
202
Proof. by rewrite /AddModal wand_elim_r. Qed.
203

204
205
206
207
208
209
210
211
212
Class IsCons {A} (l : list A) (x : A) (k : list A) := is_cons : l = x :: k.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.

Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
213

214
Class Frame {PROP : bi} (p : bool) (R P Q : PROP) := frame : ?p R  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
219
Arguments Frame {_} _ _%I _%I _%I.
Arguments frame {_ _} _%I _%I _%I {_}.
Hint Mode Frame + + ! ! - : typeclass_instances.

Class MaybeFrame {PROP : bi} (p : bool) (R P Q : PROP) :=
220
  maybe_frame : ?p R  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
Arguments MaybeFrame {_} _ _%I _%I _%I.
Arguments maybe_frame {_} _%I _%I _%I {_}.
Hint Mode MaybeFrame + + ! ! - : typeclass_instances.

Instance maybe_frame_frame {PROP : bi} p (R P Q : PROP) :
  Frame p R P Q  MaybeFrame p R P Q.
Proof. done. Qed.
Instance maybe_frame_default_persistent {PROP : bi} (R P : PROP) :
  MaybeFrame true R P P | 100.
Proof. intros. rewrite /MaybeFrame /=. by rewrite sep_elim_r. Qed.
Instance maybe_frame_default {PROP : bi} (R P : PROP) :
  TCOr (Affine R) (Absorbing P)  MaybeFrame false R P P | 100.
Proof. intros. rewrite /MaybeFrame /=. apply: sep_elim_r. Qed.

235
236
237
238
239
240
Class IntoExcept0 {PROP : sbi} (P Q : PROP) := into_except_0 : P   Q.
Arguments IntoExcept0 {_} _%I _%I : simpl never.
Arguments into_except_0 {_} _%I _%I {_}.
Hint Mode IntoExcept0 + ! - : typeclass_instances.
Hint Mode IntoExcept0 + - ! : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
243
244
245
246
247
248
(* The class [IntoLaterN] has only two instances:

- The default instance [IntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [IntoLaterN' n P Q → IntoLaterN n P Q], where [IntoLaterN']
  is identical to [IntoLaterN], but computationally is supposed to make
  progress, i.e. its instances should actually strip a later.

The point of using the auxilary class [IntoLaterN'] is to ensure that the
249
default instance is not applied deeply in the term, which may result in too many
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
253
254
255
256
257
258
259
260
261
definitions being unfolded (see issue #55).

For binary connectives we have the following instances:

<<
IntoLaterN' n P P'       IntoLaterN n Q Q'
------------------------------------------
     IntoLaterN' n (P /\ Q) (P' /\ Q')


      IntoLaterN' n Q Q'
-------------------------------
262
IntoLaterN' n (P /\ Q) (P /\ Q')
Robbert Krebbers's avatar
Robbert Krebbers committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
>>
*)
Class IntoLaterN {PROP : sbi} (n : nat) (P Q : PROP) := into_laterN : P  ^n Q.
Arguments IntoLaterN {_} _%nat_scope _%I _%I.
Arguments into_laterN {_} _%nat_scope _%I _%I {_}.
Hint Mode IntoLaterN + - - - : typeclass_instances.

Class IntoLaterN' {PROP : sbi} (n : nat) (P Q : PROP) :=
  into_laterN' :> IntoLaterN n P Q.
Arguments IntoLaterN' {_} _%nat_scope _%I _%I.
Hint Mode IntoLaterN' + - ! - : typeclass_instances.

Instance into_laterN_default {PROP : sbi} n (P : PROP) : IntoLaterN n P P | 1000.
Proof. apply laterN_intro. Qed.

Class FromLaterN {PROP : sbi} (n : nat) (P Q : PROP) := from_laterN : ^n Q  P.
Arguments FromLaterN {_} _%nat_scope _%I _%I.
Arguments from_laterN {_} _%nat_scope _%I _%I {_}.
Hint Mode FromLaterN + - ! - : typeclass_instances.

283
284
285
286
287
288
289
290
291
292
293
294
295
Class AsValid {PROP : bi} (φ : Prop) (P : PROP) := as_valid : φ  P.
Arguments AsValid {_} _%type _%I.

Class AsValid0 {PROP : bi} (φ : Prop) (P : PROP) :=
  as_valid_here : AsValid φ P.
Arguments AsValid0 {_} _%type _%I.
Existing Instance as_valid_here | 0.

Lemma as_valid_1 (φ : Prop) {PROP : bi} (P : PROP) `{!AsValid φ P} : φ  P.
Proof. by apply as_valid. Qed.
Lemma as_valid_2 (φ : Prop) {PROP : bi} (P : PROP) `{!AsValid φ P} : P  φ.
Proof. by apply as_valid. Qed.

296
297
298
299
300
301
302
303
304
305
306
307
(* We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the [tc_opaque] connective, which is used to make
definitions opaque for type class search. For example, when using `iDestruct`,
an explicit hypothesis is affected, and as such, we should look through opaque
definitions. However, when using `iFrame` or `iNext`, arbitrary hypotheses or
parts of the goal are affected, and as such, type class opacity should be
respected.

This means that there are [tc_opaque] instances for all proofmode type classes
with the exception of:

- [FromAssumption] used by [iAssumption]
Robbert Krebbers's avatar
Robbert Krebbers committed
308
- [Frame] and [MaybeFrame] used by [iFrame]
309
- [IntoLaterN] and [FromLaterN] used by [iNext]
Robbert Krebbers's avatar
Robbert Krebbers committed
310
- [IntoPersistent] used by [iPersistent]
311
*)
Robbert Krebbers's avatar
Robbert Krebbers committed
312
Instance into_pure_tc_opaque {PROP : bi} (P : PROP) φ :
313
  IntoPure P φ  IntoPure (tc_opaque P) φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
Instance from_pure_tc_opaque {PROP : bi} (P : PROP) φ :
315
  FromPure P φ  FromPure (tc_opaque P) φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Instance from_laterN_tc_opaque {PROP : sbi} n (P Q : PROP) :
317
  FromLaterN n P Q  FromLaterN n (tc_opaque P) Q := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
319
Instance into_wand_tc_opaque {PROP : bi} p q (R P Q : PROP) :
  IntoWand p q R P Q  IntoWand p q (tc_opaque R) P Q := id.
320
(* Higher precedence than [from_and_sep] so that [iCombine] does not loop. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
321
322
323
Instance from_and_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
  FromAnd P Q1 Q2  FromAnd (tc_opaque P) Q1 Q2 | 102 := id.
Instance into_and_tc_opaque {PROP : bi} p (P Q1 Q2 : PROP) :
324
  IntoAnd p P Q1 Q2  IntoAnd p (tc_opaque P) Q1 Q2 := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
325
Instance from_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
326
  FromOr P Q1 Q2  FromOr (tc_opaque P) Q1 Q2 := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Instance into_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
328
  IntoOr P Q1 Q2  IntoOr (tc_opaque P) Q1 Q2 := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
Instance from_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :
330
  FromExist P Φ  FromExist (tc_opaque P) Φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
331
Instance into_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :
332
  IntoExist P Φ  IntoExist (tc_opaque P) Φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
Instance into_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :
334
  IntoForall P Φ  IntoForall (tc_opaque P) Φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Instance from_modal_tc_opaque {PROP : bi} (P Q : PROP) :
336
  FromModal P Q  FromModal (tc_opaque P) Q := id.
337
338
(* Higher precedence than [elim_modal_timeless], so that [iAssert] does not
   loop (see test [test_iAssert_modality] in proofmode.v). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Instance elim_modal_tc_opaque {PROP : bi} (P P' Q Q' : PROP) :
340
  ElimModal P P' Q Q'  ElimModal (tc_opaque P) P' Q Q' | 100 := id.