ltac_tactics.v 107 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28 29 30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33 34 35 36 37 38 39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40 41 42 43 44 45 46 47
(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
48
  let Hhyps := pm_eval (envs_dom Δ) in
49 50 51 52
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
53
  pm_eval (envs_lookup H Δ).
54 55 56 57 58 59 60 61 62 63 64

Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
65
               [iSolveTC || fail "iStartProof: not a BI assertion"
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
86
               [iSolveTC || fail "iStartProof: not a BI assertion"
87 88 89 90 91 92 93 94 95 96 97 98
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
99
      | _ => iStartProof; eapply tac_fresh; first by (pm_reflexivity)
100 101 102
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
103
    let n := pm_eval (env_counter Δ) in
104 105 106 107 108 109 110 111 112 113 114 115 116
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
  eapply tac_eval_in with _ H _ _ _;
117
    [pm_reflexivity || fail "iEval:" H "not found"
118
    |let x := fresh in intros x; t; unfold x; reflexivity
119
    |pm_reflexivity
120 121
    |].

Robbert Krebbers's avatar
Robbert Krebbers committed
122 123
Tactic Notation "iSimpl" := iEval (simpl).
Tactic Notation "iSimpl" "in" constr(H) := iEval (simpl) in H.
124 125 126 127 128 129

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

Robbert Krebbers's avatar
Robbert Krebbers committed
130 131
PMP told me (= Robbert) in person that this is not possible with the current
Ltac, but it may be possible in Ltac2. *)
132 133 134 135

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
136 137 138 139 140 141
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iRename:" H2 "not fresh"|].
142 143 144 145 146

Local Inductive esel_pat :=
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ralf Jung's avatar
Ralf Jung committed
147
Local Ltac iElaborateSelPat_go pat Δ Hs :=
148 149 150
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
151
  | SelIntuitionistic :: ?pat =>
152
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
153
    let Δ' := pm_eval (envs_clear_intuitionistic Δ) in
154 155
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
156 157
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
158 159
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
160
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
161
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
162 163 164
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
165 166
    end
  end.
167 168 169
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
170
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
171 172 173 174
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
175 176 177
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
178
    |pm_reduce; iSolveTC ||
179
     let H := pretty_ident H in
180 181 182 183
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

184 185 186 187 188 189
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
190
Tactic Notation "iClear" constr(Hs) :=
191
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
192 193 194 195 196 197 198

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
199
    [pm_reflexivity ||
200
     let H := pretty_ident H in
201
     fail "iExact:" H "not found"
202
    |iSolveTC ||
203
     let H := pretty_ident H in
204 205
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
206
    |pm_reduce; iSolveTC ||
207
     let H := pretty_ident H in
208 209 210 211 212 213 214 215 216
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
217
     first [is_evar i; fail 1 | pm_reflexivity]
218
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
219
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
220
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
221
     first [is_evar i; fail 1 | pm_reflexivity]
222
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
223
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
224 225 226 227 228 229 230 231 232
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
233
          [pm_reflexivity
234
          |apply Hass
235
          |pm_reduce; iSolveTC ||
236 237 238
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
239
          [pm_reflexivity
240 241 242 243 244 245 246 247 248 249 250 251
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

252 253 254
(** * Making hypotheses intuitionistic or pure *)
Local Tactic Notation "iIntuitionistic" constr(H) :=
  eapply tac_intuitionistic with _ H _ _ _; (* (i:=H) *)
255 256
    [pm_reflexivity ||
     let H := pretty_ident H in
257
     fail "iIntuitionistic:" H "not found"
258
    |iSolveTC ||
259
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
260
     fail "iIntuitionistic:" P "not persistent"
261
    |pm_reduce; iSolveTC ||
262
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
263
     fail "iIntuitionistic:" P "not affine and the goal not absorbing"
264
    |pm_reflexivity|].
265 266 267

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
268 269 270
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
271
    |iSolveTC ||
272 273
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
274
    |pm_reduce; iSolveTC ||
275 276 277 278 279 280 281
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
282
    [pm_reduce; iSolveTC ||
283 284 285 286 287
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
288
    [pm_reflexivity
289
    |iSolveTC ||
290 291 292 293 294 295
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
296
  pm_prettify;
297 298 299 300 301 302 303 304 305
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
306
    [iSolveTC || fail "iFrame: cannot frame" φ
307 308 309 310 311
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
312 313 314
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
315
    |iSolveTC ||
316 317 318 319 320 321 322
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

323
Local Ltac iFrameAnyIntuitionistic :=
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

364 365 366 367
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
368
  | SelIntuitionistic :: ?Hs => iFrameAnyIntuitionistic; iFrame_go Hs
369 370 371 372
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

373
Tactic Notation "iFrame" constr(Hs) :=
374
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  (* We use [_ || _] instead of [first [..|..]] so that the error in the second
  branch propagates upwards. *)
  (
    (* introduction at the meta level *)
    intros x
  ) || (
    (* introduction in the logic *)
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ _ =>
      eapply tac_forall_intro;
        [iSolveTC ||
         let P := match goal with |- FromForall ?P _ => P end in
         fail "iIntro: cannot turn" P "into a universal quantifier"
        |pm_prettify; intros x
         (* subgoal *)]
    end).
420 421 422 423

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
424
  [(* (?Q → _) *)
425
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
426
      [iSolveTC
427
      |pm_reduce; iSolveTC ||
428 429 430
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
431 432 433
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
434
      |iSolveTC
435 436
      |(* subgoal *)]
  |(* (_ -∗ _) *)
437
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
438
      [iSolveTC
439 440 441
      | pm_reflexivity ||
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
442 443
      |(* subgoal *)]
  | fail 1 "iIntro: nothing to introduce" ].
444 445 446 447

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
448
  [(* (?P → _) *)
449
   eapply tac_impl_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
450 451 452 453 454 455 456 457 458
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
      fail 1 "iIntro:" P "not persistent"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |(* (?P -∗ _) *)
459
   eapply tac_wand_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
460 461 462
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
463
      fail 1 "iIntro:" P "not intuitionistic"
464 465 466 467 468 469 470 471
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |fail 1 "iIntro: nothing to introduce"].
472 473

Local Tactic Notation "iIntro" "_" :=
474
  iStartProof;
475
  first
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  [(* (?Q → _) *)
   eapply tac_impl_intro_drop;
     [iSolveTC
     |(* subgoal *)]
  |(* (_ -∗ _) *)
   eapply tac_wand_intro_drop;
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |(* subgoal *)]
  |(* (∀ _, _) *)
   iIntro (_)
   (* subgoal *)
  |fail 1 "iIntro: nothing to introduce"].
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

529 530 531 532 533 534 535 536
(** The tactic [iRevertHyp H with tac] reverts the hypothesis [H] and calls
[tac] with a Boolean that is [true] iff [H] was in the intuitionistic context. *)
Tactic Notation "iRevertHyp" constr(H) "with" tactic1(tac) :=
  (* Create a Boolean evar [p] to keep track of whether the hypothesis [H] was
  in the intuitionistic context. *)
  let p := fresh in evar (p : bool);
  let p' := eval unfold p in p in clear p;
  eapply tac_revert with _ H p' _;
537 538 539
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iRevert:" H "not found"
540 541 542
    |pm_reduce; tac p'].

Tactic Notation "iRevertHyp" constr(H) := iRevertHyp H with (fun _ => idtac).
543

544 545 546 547 548 549 550
Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
551
    | ESelIdent _ ?H :: ?Hs => iRevertHyp H; go Hs
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    end in
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
(** * Specialize *)
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
614
Local Ltac iSpecializeArgs_go H xs :=
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
  lazymatch xs with
  | hnil => idtac
  | hcons ?x ?xs =>
     notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
       [pm_reflexivity ||
        let H := pretty_ident H in
        fail "iSpecialize:" H "not found"
       |iSolveTC ||
        let P := match goal with |- IntoForall ?P _ => P end in
        fail "iSpecialize: cannot instantiate" P "with" x
       |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
        | |-  _ : ?A, _ =>
          notypeclasses refine (@ex_intro A _ x (conj _ _))
        end; [shelve..|pm_reflexivity|iSpecializeArgs_go H xs]]
  end.
630 631
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
632

633
Ltac iSpecializePat_go H1 pats :=
634 635 636 637 638 639 640 641 642 643 644 645
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
646
  lazymatch pats with
647 648 649
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
650
       iSpecializePat_go H1 pats
651 652
    | SIdent ?H2 :: ?pats =>
       notypeclasses refine (tac_specialize _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
653 654 655 656 657 658
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
659 660 661 662
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
663
         |pm_reflexivity|iSpecializePat_go H1 pats]
664 665
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
666 667 668
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
669 670 671 672
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
673
         |pm_reflexivity
674
         |solve_done d (*goal*)
675
         |iSpecializePat_go H1 pats]
676 677
    | SGoal (SpecGoal GIntuitionistic false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
678 679 680
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
681 682 683 684 685
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
686
         |pm_reflexivity
687
         |iFrame Hs_frame; solve_done d (*goal*)
688
         |iSpecializePat_go H1 pats]
689 690
    | SGoal (SpecGoal GIntuitionistic _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for intuitionistic premise"
691 692 693
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
694 695 696
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
697 698
         |solve_to_wand H1
         |lazymatch m with
699
          | GSpatial => class_apply add_modal_id
700 701
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
702
         |pm_reflexivity ||
703 704 705
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
706
         |iSpecializePat_go H1 pats]
707 708
    | SAutoFrame GIntuitionistic :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
709 710 711
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
712 713 714 715
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
716
         |pm_reflexivity
717
         |solve [iFrame "∗ #"]
718
         |iSpecializePat_go H1 pats]
719 720
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
721 722 723
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
724 725
         |solve_to_wand H1
         |lazymatch m with
Robbert Krebbers's avatar
Robbert Krebbers committed
726
          | GSpatial => class_apply add_modal_id
727 728 729 730 731 732 733
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
734 735 736 737 738
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
739 740

(* The argument [p] denotes whether the conclusion of the specialized term is
741
intuitionistic. If so, one can use all spatial hypotheses for both proving the
742 743 744 745 746 747 748 749 750
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
751
  let p := intro_pat_intuitionistic p in
752 753 754 755 756 757 758 759 760
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
  lazymatch type of H with
  | ident =>
761
    (* The lemma [tac_specialize_intuitionistic_helper] allows one to use all
762 763
    spatial hypotheses for both proving the premises of the lemma we
    specialize as well as those of the remaining goal. We can only use it when
764 765
    the result of the specialization is intuitionistic, and no modality is
    eliminated. We do not use [tac_specialize_intuitionistic_helper] in the case
Robbert Krebbers's avatar
Robbert Krebbers committed
766 767
    only universal quantifiers and no implications or wands are instantiated
    (i.e [pat = []]) because it is a.) not needed, and b.) more efficient. *)
768 769 770 771 772
    let pat := spec_pat.parse pat in
    lazymatch eval compute in
      (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
    | true =>
       (* FIXME: do something reasonable when the BI is not affine *)
773
       notypeclasses refine (tac_specialize_intuitionistic_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
774 775 776
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iSpecialize:" H "not found"
777 778
         |iSpecializePat H pat;
           [..
779
           |notypeclasses refine (tac_specialize_intuitionistic_helper_done _ H _ _ _);
780
            pm_reflexivity]
781 782 783
         |iSolveTC ||
          let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not persistent"
784
         |pm_reduce; iSolveTC ||
785 786
          let Q := match goal with |- TCAnd _ (Affine ?Q) => Q end in
          fail "iSpecialize:" Q "not affine"
787
         |pm_reflexivity
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
         |(* goal *)]
    | false => iSpecializePat H pat
    end
  | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
  end].

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

(** * Pose proof *)
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
828 829 830 831 832 833 834 835 836 837 838 839 840
Local Ltac iIntoEmpValid t :=
  let go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|iIntoEmpValid uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; iIntoEmpValid (t e')
    end
  in
841 842 843 844 845 846 847 848 849 850 851 852 853 854
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
855
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
856
          |exact t]].
857

Robbert Krebbers's avatar
Robbert Krebbers committed
858 859
Tactic Notation "iPoseProofCoreHyp" constr(H) "as" constr(Hnew) :=
  eapply tac_pose_proof_hyp with _ _ H _ Hnew _;
860
    [pm_reflexivity ||
Robbert Krebbers's avatar
Robbert Krebbers committed
861 862
     let H := pretty_ident H in
     fail "iPoseProof:" H "not found"
863
    |pm_reflexivity ||
Robbert Krebbers's avatar
Robbert Krebbers committed
864 865 866 867 868 869 870 871
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |].

Tactic Notation "iPoseProofCoreLem"
    constr(lem) "as" constr(Hnew) "before_tc" tactic(tac) :=
  eapply tac_pose_proof with _ Hnew _; (* (j:=H) *)
    [iIntoEmpValid lem
872
    |pm_reflexivity ||
Robbert Krebbers's avatar
Robbert Krebbers committed
873 874 875 876
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |tac];
  (* Solve all remaining TC premises generated by [iIntoEmpValid] *)
877
  try iSolveTC.
878 879 880 881 882 883 884 885 886 887 888

(** The tactic [iPoseProofCore lem as p lazy_tc tac] inserts the resource
described by [lem] into the context. The tactic takes a continuation [tac] as
its argument, which is called with a temporary fresh name [H] that refers to
the hypothesis containing [lem].

There are a couple of additional arguments:

- The argument [p] is like that of [iSpecialize]. It is a Boolean that denotes
  whether the conclusion of the specialized term [lem] is persistent.
- The argument [lazy_tc] denotes whether type class inference on the premises
Robbert Krebbers's avatar
Robbert Krebbers committed
889 890
  of [lem] should be performed before (if [lazy_tc = false]) or after (if
  [lazy_tc = true]) [tac H] is called.
891 892 893 894 895 896 897 898 899 900

Both variants of [lazy_tc] are used in other tactics that build on top of
[iPoseProofCore]:

- The tactic [iApply] uses lazy type class inference (i.e. [lazy_tc = true]),
  so that evars can first be matched against the goal before being solved by
  type class inference.
- The tactic [iDestruct] uses eager type class inference (i.e. [lazy_tc = false])
  because it may be not possible to eliminate logical connectives before all
  type class constraints have been resolved. *)
901 902 903 904 905 906 907 908
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
Robbert Krebbers's avatar
Robbert Krebbers committed
909
    | ITrm _ ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
910 911
    | _ => idtac
    end in
Robbert Krebbers's avatar
Robbert Krebbers committed
912 913 914 915 916 917 918 919 920
  lazymatch type of t with
  | ident => iPoseProofCoreHyp t as Htmp; spec_tac (); [..|tac Htmp]
  | _ =>
     lazymatch eval compute in lazy_tc with
     | true =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac (); [..|tac Htmp])
     | false =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac ()); [..|tac Htmp]
     end
921 922
  end.

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
(** [iApply lem] takes an argument [lem : P₁ -∗ .. -∗ Pₙ -∗ Q] (after the
specialization patterns in [lem] have been executed), where [Q] should match
the goal, and generates new goals [P1] ... [Pₙ]. Depending on the number of
premises [n], the tactic will have the following behavior:

- If [n = 0], it will immediately solve the goal (i.e. it will not generate any
  subgoals). When working in a general BI, this means that the tactic can fail
  in case there are non-affine spatial hypotheses in the context prior to using
  the [iApply] tactic. Note that if [n = 0], the tactic behaves exactly like
  [iExact lem].
- If [n > 0] it will generate a goals [P₁] ... [Pₙ]. All spatial hypotheses
  will be transferred to the last goal, i.e. [Pₙ]; the other goals will receive
  no spatial hypotheses. If you want to control more precisely how the spatial
  hypotheses are subdivided, you should add additional introduction patterns to
  [lem]. *)

(* The helper [iApplyHypExact] takes care of the [n=0] case. It fails with level
0 if we should proceed to the [n > 0] case, and with level 1 if there is an
actual error. *)
Local Ltac iApplyHypExact H :=
  first
    [eapply tac_assumption with _ H _ _; (* (i:=H) *)
       [pm_reflexivity || fail 1
       |iSolveTC || fail 1
       |pm_reduce; iSolveTC]
    |lazymatch iTypeOf H with
     | Some (_,?Q) =>
        fail 2 "iApply:" Q "not absorbing and the remaining hypotheses not affine"
     end].
Local Ltac iApplyHypLoop H :=
  first
954
    [eapply tac_apply with _ H _ _ _;
955
      [pm_reflexivity
956
      |iSolveTC
957 958 959 960 961 962 963 964 965 966
      |pm_prettify (* reduce redexes created by instantiation *)]
    |iSpecializePat H "[]"; last iApplyHypLoop H].

Tactic Notation "iApplyHyp" constr(H) :=
  first
    [iApplyHypExact H
    |iApplyHypLoop H
    |lazymatch iTypeOf H with
     | Some (_,?Q) => fail 1 "iApply: cannot apply" Q
     end].
967 968 969 970 971 972 973 974 975 976 977

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
978
    |(* subgoal *)].
979 980 981 982 983 984
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
985
    |(* subgoal *)].
986 987 988

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
989 990 991
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iOrDestruct:" H "not found"
992 993 994
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
995 996 997 998 999