list.v 16.6 KB
Newer Older
1
From iris.algebra Require Export cmra.
2
From iris.prelude Require Export list.
3
From iris.algebra Require Import upred updates local_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7 8 9

Section cofe.
Context {A : cofeT}.

Instance list_dist : Dist (list A) := λ n, Forall2 (dist n).

10 11 12
Lemma list_dist_lookup n l1 l2 : l1 {n} l2   i, l1 !! i {n} l2 !! i.
Proof. setoid_rewrite dist_option_Forall2. apply Forall2_lookup. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14 15 16 17 18 19
Global Instance cons_ne n : Proper (dist n ==> dist n ==> dist n) (@cons A) := _.
Global Instance app_ne n : Proper (dist n ==> dist n ==> dist n) (@app A) := _.
Global Instance length_ne n : Proper (dist n ==> (=)) (@length A) := _.
Global Instance tail_ne n : Proper (dist n ==> dist n) (@tail A) := _.
Global Instance take_ne n : Proper (dist n ==> dist n) (@take A n) := _.
Global Instance drop_ne n : Proper (dist n ==> dist n) (@drop A n) := _.
Global Instance list_lookup_ne n i :
20
  Proper (dist n ==> dist n) (lookup (M:=list A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23
Proof. intros ???. by apply dist_option_Forall2, Forall2_lookup. Qed.
Global Instance list_alter_ne n f i :
  Proper (dist n ==> dist n) f 
24
  Proper (dist n ==> dist n) (alter (M:=list A) f i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
Global Instance list_insert_ne n i :
26
  Proper (dist n ==> dist n ==> dist n) (insert (M:=list A) i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28 29
Global Instance list_inserts_ne n i :
  Proper (dist n ==> dist n ==> dist n) (@list_inserts A i) := _.
Global Instance list_delete_ne n i :
30
  Proper (dist n ==> dist n) (delete (M:=list A) i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Global Instance option_list_ne n : Proper (dist n ==> dist n) (@option_list A).
Proof. intros ???; by apply Forall2_option_list, dist_option_Forall2. Qed.
Global Instance list_filter_ne n P `{ x, Decision (P x)} :
  Proper (dist n ==> iff) P 
  Proper (dist n ==> dist n) (filter (B:=list A) P) := _.
Global Instance replicate_ne n :
  Proper (dist n ==> dist n) (@replicate A n) := _.
Global Instance reverse_ne n : Proper (dist n ==> dist n) (@reverse A) := _.
Global Instance last_ne n : Proper (dist n ==> dist n) (@last A).
Proof. intros ???; by apply dist_option_Forall2, Forall2_last. Qed.
Global Instance resize_ne n :
  Proper (dist n ==> dist n ==> dist n) (@resize A n) := _.

Program Definition list_chain
    (c : chain (list A)) (x : A) (k : nat) : chain A :=
46
  {| chain_car n := from_option id x (c n !! k) |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Next Obligation. intros c x k n i ?. by rewrite /= (chain_cauchy c n i). Qed.
Instance list_compl : Compl (list A) := λ c,
  match c 0 with
  | [] => []
  | x :: _ => compl  list_chain c x <$> seq 0 (length (c 0))
  end.

Definition list_cofe_mixin : CofeMixin (list A).
Proof.
  split.
  - intros l k. rewrite equiv_Forall2 -Forall2_forall.
    split; induction 1; constructor; intros; try apply equiv_dist; auto.
  - apply _.
  - rewrite /dist /list_dist. eauto using Forall2_impl, dist_S.
  - intros n c; rewrite /compl /list_compl.
    destruct (c 0) as [|x l] eqn:Hc0 at 1.
    { by destruct (chain_cauchy c 0 n); auto with omega. }
    rewrite -(λ H, length_ne _ _ _ (chain_cauchy c 0 n H)); last omega.
65 66
    apply Forall2_lookup=> i. rewrite -dist_option_Forall2 list_lookup_fmap.
    destruct (decide (i < length (c n))); last first.
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68 69 70
    { rewrite lookup_seq_ge ?lookup_ge_None_2; auto with omega. }
    rewrite lookup_seq //= (conv_compl n (list_chain c _ _)) /=.
    by destruct (lookup_lt_is_Some_2 (c n) i) as [? ->].
Qed.
71
Canonical Structure listC := CofeT (list A) list_cofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74 75 76 77 78 79 80 81 82 83
Global Instance list_discrete : Discrete A  Discrete listC.
Proof. induction 2; constructor; try apply (timeless _); auto. Qed.

Global Instance nil_timeless : Timeless (@nil A).
Proof. inversion_clear 1; constructor. Qed.
Global Instance cons_timeless x l : Timeless x  Timeless l  Timeless (x :: l).
Proof. intros ??; inversion_clear 1; constructor; by apply timeless. Qed.
End cofe.

Arguments listC : clear implicits.

(** Functor *)
84 85 86
Lemma list_fmap_ext_ne {A} {B : cofeT} (f g : A  B) (l : list A) n :
  ( x, f x {n} g x)  f <$> l {n} g <$> l.
Proof. intros Hf. by apply Forall2_fmap, Forall_Forall2, Forall_true. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88
Instance list_fmap_ne {A B : cofeT} (f : A  B) n:
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (fmap (M:=list) f).
89
Proof. intros Hf l k ?; by eapply Forall2_fmap, Forall2_impl; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
90 91 92
Definition listC_map {A B} (f : A -n> B) : listC A -n> listC B :=
  CofeMor (fmap f : listC A  listC B).
Instance listC_map_ne A B n : Proper (dist n ==> dist n) (@listC_map A B).
93
Proof. intros f g ? l. by apply list_fmap_ext_ne. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

Program Definition listCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := listC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := listC_map (cFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(list_fmap_id x).
  apply list_fmap_setoid_ext=>y. apply cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose.
  apply list_fmap_setoid_ext=>y; apply cFunctor_compose.
Qed.

Instance listCF_contractive F :
  cFunctorContractive F  cFunctorContractive (listCF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_contractive.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118

(* CMRA *)
Section cmra.
119
  Context {A : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123 124 125 126 127 128 129
  Implicit Types l : list A.
  Local Arguments op _ _ !_ !_ / : simpl nomatch.

  Instance list_op : Op (list A) :=
    fix go l1 l2 := let _ : Op _ := @go in
    match l1, l2 with
    | [], _ => l2
    | _, [] => l1
    | x :: l1, y :: l2 => x  y :: l1  l2
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Instance list_pcore : PCore (list A) := λ l, Some (core <$> l).
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

  Instance list_valid : Valid (list A) := Forall (λ x,  x).
  Instance list_validN : ValidN (list A) := λ n, Forall (λ x, {n} x).

  Lemma list_lookup_valid l :  l   i,  (l !! i).
  Proof.
    rewrite {1}/valid /list_valid Forall_lookup; split.
    - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|].
    - intros Hl i x Hi. move: (Hl i); by rewrite Hi.
  Qed.
  Lemma list_lookup_validN n l : {n} l   i, {n} (l !! i).
  Proof.
    rewrite {1}/validN /list_validN Forall_lookup; split.
    - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|].
    - intros Hl i x Hi. move: (Hl i); by rewrite Hi.
  Qed.
  Lemma list_lookup_op l1 l2 i : (l1  l2) !! i = l1 !! i  l2 !! i.
  Proof.
    revert i l2. induction l1 as [|x l1]; intros [|i] [|y l2];
      by rewrite /= ?left_id_L ?right_id_L.
  Qed.
  Lemma list_lookup_core l i : core l !! i = core (l !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155 156
  Proof.
    rewrite /core /= list_lookup_fmap.
    destruct (l !! i); by rewrite /= ?Some_core.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

  Lemma list_lookup_included l1 l2 : l1  l2   i, l1 !! i  l2 !! i.
  Proof.
    split.
    { intros [l Hl] i. exists (l !! i). by rewrite Hl list_lookup_op. }
    revert l1. induction l2 as [|y l2 IH]=>-[|x l1] Hl.
    - by exists [].
    - destruct (Hl 0) as [[z|] Hz]; inversion Hz.
    - by exists (y :: l2).
    - destruct (IH l1) as [l3 ?]; first (intros i; apply (Hl (S i))).
      destruct (Hl 0) as [[z|] Hz]; inversion_clear Hz; simplify_eq/=.
      + exists (z :: l3); by constructor.
      + exists (core x :: l3); constructor; by rewrite ?cmra_core_r.
  Qed.

  Definition list_cmra_mixin : CMRAMixin (list A).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175
    apply cmra_total_mixin.
    - eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177
    - intros n l l1 l2; rewrite !list_dist_lookup=> Hl i.
      by rewrite !list_lookup_op Hl.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
    - intros n l1 l2 Hl; by rewrite /core /= Hl.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182 183 184 185 186 187 188 189 190 191 192
    - intros n l1 l2; rewrite !list_dist_lookup !list_lookup_validN=> Hl ? i.
      by rewrite -Hl.
    - intros l. rewrite list_lookup_valid. setoid_rewrite list_lookup_validN.
      setoid_rewrite cmra_valid_validN. naive_solver.
    - intros n x. rewrite !list_lookup_validN. auto using cmra_validN_S.
    - intros l1 l2 l3; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_op assoc.
    - intros l1 l2; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_op comm.
    - intros l; rewrite list_equiv_lookup=> i.
      by rewrite list_lookup_op list_lookup_core cmra_core_l.
    - intros l; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_core cmra_core_idemp.
    - intros l1 l2; rewrite !list_lookup_included=> Hl i.
193
      rewrite !list_lookup_core. by apply cmra_core_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
194 195
    - intros n l1 l2. rewrite !list_lookup_validN.
      setoid_rewrite list_lookup_op. eauto using cmra_validN_op_l.
196 197 198 199 200 201 202 203
    - intros n l.
      induction l as [|x l IH]=> -[|y1 l1] [|y2 l2] Hl; inversion_clear 1.
      + by exists [], [].
      + exists [], (x :: l); by repeat constructor.
      + exists (x :: l), []; by repeat constructor.
      + inversion_clear Hl. destruct (IH l1 l2) as (l1'&l2'&?&?&?),
          (cmra_extend n x y1 y2) as (y1'&y2'&?&?&?); simplify_eq/=; auto.
        exists (y1' :: l1'), (y2' :: l2'); repeat constructor; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
  Canonical Structure listR := CMRAT (list A) list_cofe_mixin list_cmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
206 207

  Global Instance empty_list : Empty (list A) := [].
208
  Definition list_ucmra_mixin : UCMRAMixin (list A).
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211 212
  Proof.
    split.
    - constructor.
    - by intros l.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
    - by constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  Qed.
215 216
  Canonical Structure listUR :=
    UCMRAT (list A) list_cofe_mixin list_cmra_mixin list_ucmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218 219 220 221 222 223 224 225

  Global Instance list_cmra_discrete : CMRADiscrete A  CMRADiscrete listR.
  Proof.
    split; [apply _|]=> l; rewrite list_lookup_valid list_lookup_validN=> Hl i.
    by apply cmra_discrete_valid.
  Qed.

  Global Instance list_persistent l : ( x : A, Persistent x)  Persistent l.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227
    intros ?; constructor; apply list_equiv_lookup=> i.
    by rewrite list_lookup_core (persistent_core (l !! i)).
Robbert Krebbers's avatar
Robbert Krebbers committed
228 229 230
  Qed.

  (** Internalized properties *)
231
  Lemma list_equivI {M} l1 l2 : l1  l2  ( i, l1 !! i  l2 !! i : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
232
  Proof. uPred.unseal; constructor=> n x ?. apply list_dist_lookup. Qed.
233
  Lemma list_validI {M} l :  l  ( i,  (l !! i) : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
234 235 236 237
  Proof. uPred.unseal; constructor=> n x ?. apply list_lookup_validN. Qed.
End cmra.

Arguments listR : clear implicits.
238
Arguments listUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

240
Instance list_singletonM {A : ucmraT} : SingletonM nat A (list A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243
  replicate n  ++ [x].

Section properties.
244
  Context {A : ucmraT}.
245
  Implicit Types l : list A.
246
  Implicit Types x y z : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248 249
  Local Arguments op _ _ !_ !_ / : simpl nomatch.
  Local Arguments cmra_op _ !_ !_ / : simpl nomatch.

250
  Lemma list_lookup_opM l mk i : (l ? mk) !! i = l !! i  (mk = (!! i)).
251 252
  Proof. destruct mk; by rewrite /= ?list_lookup_op ?right_id_L. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  Lemma list_op_app l1 l2 l3 :
    length l2  length l1  (l1 ++ l3)  l2 = (l1  l2) ++ l3.
  Proof.
    revert l2 l3.
    induction l1 as [|x1 l1]=> -[|x2 l2] [|x3 l3] ?; f_equal/=; auto with lia.
  Qed.

  Lemma list_lookup_validN_Some n l i x : {n} l  l !! i {n} Some x  {n} x.
  Proof. move=> /list_lookup_validN /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed.
  Lemma list_lookup_valid_Some l i x :  l  l !! i  Some x   x.
  Proof. move=> /list_lookup_valid /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed.

  Lemma list_op_length l1 l2 : length (l1  l2) = max (length l1) (length l2).
  Proof. revert l2. induction l1; intros [|??]; f_equal/=; auto. Qed.

  Lemma replicate_valid n (x : A) :  x   replicate n x.
  Proof. apply Forall_replicate. Qed.
270 271
  Global Instance list_singletonM_ne n i :
    Proper (dist n ==> dist n) (@list_singletonM A i).
272
  Proof. intros l1 l2 ?. apply Forall2_app; by repeat constructor. Qed.
273 274
  Global Instance list_singletonM_proper i :
    Proper (() ==> ()) (list_singletonM i) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
275

276
  Lemma elem_of_list_singletonM i z x : z  {[i := x]}  z =   z = x.
277 278 279
  Proof.
    rewrite elem_of_app elem_of_list_singleton elem_of_replicate. naive_solver.
  Qed.
280
  Lemma list_lookup_singletonM i x : {[ i := x ]} !! i = Some x.
281
  Proof. induction i; by f_equal/=. Qed.
282 283
  Lemma list_lookup_singletonM_ne i j x :
    i  j  {[ i := x ]} !! j = None  {[ i := x ]} !! j = Some .
284
  Proof. revert j; induction i; intros [|j]; naive_solver auto with omega. Qed.
285
  Lemma list_singletonM_validN n i x : {n} {[ i := x ]}  {n} x.
286 287
  Proof.
    rewrite list_lookup_validN. split.
288
    { move=> /(_ i). by rewrite list_lookup_singletonM. }
289
    intros Hx j; destruct (decide (i = j)); subst.
290 291
    - by rewrite list_lookup_singletonM.
    - destruct (list_lookup_singletonM_ne i j x) as [Hi|Hi]; first done;
292 293
        rewrite Hi; by try apply (ucmra_unit_validN (A:=A)).
  Qed.
294 295 296 297 298
  Lemma list_singleton_valid  i x :  {[ i := x ]}   x.
  Proof.
    rewrite !cmra_valid_validN. by setoid_rewrite list_singletonM_validN.
  Qed.
  Lemma list_singletonM_length i x : length {[ i := x ]} = S i.
299
  Proof.
300
    rewrite /singletonM /list_singletonM app_length replicate_length /=; lia.
301 302
  Qed.

303
  Lemma list_core_singletonM i (x : A) : core {[ i := x ]}  {[ i := core x ]}.
304
  Proof.
305
    rewrite /singletonM /list_singletonM.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
    by rewrite {1}/core /= fmap_app fmap_replicate (persistent_core ).
307
  Qed.
308 309 310 311 312 313 314 315 316 317 318 319 320
  Lemma list_op_singletonM i (x y : A) :
    {[ i := x ]}  {[ i := y ]}  {[ i := x  y ]}.
  Proof.
    rewrite /singletonM /list_singletonM /=.
    induction i; constructor; rewrite ?left_id; auto.
  Qed.
  Lemma list_alter_singletonM f i x : alter f i {[i := x]} = {[i := f x]}.
  Proof.
    rewrite /singletonM /list_singletonM /=. induction i; f_equal/=; auto.
  Qed.
  Global Instance list_singleton_persistent i (x : A) :
    Persistent x  Persistent {[ i := x ]}.
  Proof. by rewrite !persistent_total list_core_singletonM=> ->. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322

  (* Update *)
323
  Lemma list_middle_updateP (P : A  Prop) (Q : list A  Prop) l1 x l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
324 325
    x ~~>: P  ( y, P y  Q (l1 ++ y :: l2))  l1 ++ x :: l2 ~~>: Q.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
326 327 328
    intros Hx%option_updateP' HP.
    apply cmra_total_updateP=> n mf; rewrite list_lookup_validN=> Hm.
    destruct (Hx n (Some (mf !! length l1))) as ([y|]&H1&H2); simpl in *; try done.
Robbert Krebbers's avatar
Robbert Krebbers committed
329 330 331 332 333 334 335 336 337 338
    { move: (Hm (length l1)). by rewrite list_lookup_op list_lookup_middle. }
    exists (l1 ++ y :: l2); split; auto.
    apply list_lookup_validN=> i.
    destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
    - move: (Hm i); by rewrite !list_lookup_op !lookup_app_l.
    - by rewrite list_lookup_op list_lookup_middle.
    - move: (Hm i). rewrite !(cons_middle _ l1 l2) !assoc.
      rewrite !list_lookup_op !lookup_app_r !app_length //=; lia.
  Qed.

339
  Lemma list_middle_update l1 l2 x y : x ~~> y  l1 ++ x :: l2 ~~> l1 ++ y :: l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
  Proof.
341
    rewrite !cmra_update_updateP => H; eauto using list_middle_updateP with subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
342 343
  Qed.

344 345 346
  Lemma list_middle_local_update l1 l2 x y ml :
    x ~l~> y @ ml = (!! length l1) 
    l1 ++ x :: l2 ~l~> l1 ++ y :: l2 @ ml.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
  Proof.
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    intros [Hxy Hxy']; split.
    - intros n; rewrite !list_lookup_validN=> Hl i; move: (Hl i).
      destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
      + by rewrite !list_lookup_opM !lookup_app_l.
      + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM; apply (Hxy n).
      + rewrite !(cons_middle _ l1 l2) !assoc.
        rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
    - intros n mk; rewrite !list_lookup_validN !list_dist_lookup => Hl Hl' i.
      move: (Hl i) (Hl' i).
      destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
      + by rewrite !list_lookup_opM !lookup_app_l.
      + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM !inj_iff.
        apply (Hxy' n).
      + rewrite !(cons_middle _ l1 l2) !assoc.
        rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
363
  Qed.
364 365

  Lemma list_singleton_local_update i x y ml :
366
    x ~l~> y @ ml = (!! i)  {[ i := x ]} ~l~> {[ i := y ]} @ ml.
367
  Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370
End properties.

(** Functor *)
371
Instance list_fmap_cmra_monotone {A B : ucmraT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373 374 375 376 377
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : list A  list B).
Proof.
  split; try apply _.
  - intros n l. rewrite !list_lookup_validN=> Hl i. rewrite list_lookup_fmap.
    by apply (validN_preserving (fmap f : option A  option B)).
  - intros l1 l2. rewrite !list_lookup_included=> Hl i. rewrite !list_lookup_fmap.
378
    by apply (cmra_monotone (fmap f : option A  option B)).
Robbert Krebbers's avatar
Robbert Krebbers committed
379 380
Qed.

381 382 383
Program Definition listURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := listUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := listC_map (urFunctor_map F fg)
Robbert Krebbers's avatar
Robbert Krebbers committed
384 385
|}.
Next Obligation.
386
  by intros F ???? n f g Hfg; apply listC_map_ne, urFunctor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
387 388 389
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(list_fmap_id x).
390
  apply list_fmap_setoid_ext=>y. apply urFunctor_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
391 392 393
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose.
394
  apply list_fmap_setoid_ext=>y; apply urFunctor_compose.
Robbert Krebbers's avatar
Robbert Krebbers committed
395 396
Qed.

397 398
Instance listURF_contractive F :
  urFunctorContractive F  urFunctorContractive (listURF F).
Robbert Krebbers's avatar
Robbert Krebbers committed
399
Proof.
400
  by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, urFunctor_contractive.
Robbert Krebbers's avatar
Robbert Krebbers committed
401
Qed.