option.v 17.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
From iris.prelude Require Export tactics.
Robbert Krebbers's avatar
Robbert Krebbers committed
6 7 8 9 10 11 12

Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

(** * General definitions and theorems *)
(** Basic properties about equality. *)
13
Lemma None_ne_Some {A} (x : A) : None  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
Proof. congruence. Qed.
15
Lemma Some_ne_None {A} (x : A) : Some x  None.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
Proof. congruence. Qed.
17
Lemma eq_None_ne_Some {A} (mx : option A) x : mx = None  mx  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
18
Proof. congruence. Qed.
19
Instance Some_inj {A} : Inj (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
Proof. congruence. Qed.

22 23
(** The [from_option] is the eliminator for option. *)
Definition from_option {A B} (f : A  B) (y : B) (mx : option A) : B :=
24
  match mx with None => y | Some x => f x end.
25 26
Instance: Params (@from_option) 3.
Arguments from_option {_ _} _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
(* The eliminator again, but with the arguments in different order, which is
sometimes more convenient. *)
Notation default y mx f := (from_option f y mx) (only parsing).
Robbert Krebbers's avatar
Robbert Krebbers committed
31 32 33

(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
34 35 36
Lemma option_eq {A} (mx my: option A): mx = my   x, mx = Some x  my = Some x.
Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed.
Lemma option_eq_1 {A} (mx my: option A) x : mx = my  mx = Some x  my = Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
37
Proof. congruence. Qed.
38 39
Lemma option_eq_1_alt {A} (mx my : option A) x :
  mx = my  my = Some x  mx = Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41
Proof. congruence. Qed.

42 43 44 45
Definition is_Some {A} (mx : option A) :=  x, mx = Some x.
Instance: Params (@is_Some) 1.

Lemma mk_is_Some {A} (mx : option A) x : mx = Some x  is_Some mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49 50 51
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.

52
Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Robbert Krebbers's avatar
Robbert Krebbers committed
53
Proof.
54 55
  set (P (mx : option A) := match mx with Some _ => True | _ => False end).
  set (f mx := match mx return P mx  is_Some mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
56
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
57 58 59 60
  set (g mx (H : is_Some mx) :=
    match H return P mx with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert ( mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
Robbert Krebbers's avatar
Robbert Krebbers committed
61
Qed.
62 63
Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
  match mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
64 65 66 67
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
  end.

68 69 70 71 72
Definition is_Some_proj {A} {mx : option A} : is_Some mx  A :=
  match mx with Some x => λ _, x | None => False_rect _  is_Some_None end.
Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } :=
  match mx return { x | mx = Some x } + { mx = None } with
  | Some x => inleft (x  eq_refl _)
Robbert Krebbers's avatar
Robbert Krebbers committed
73 74 75
  | None => inright eq_refl
  end.

76 77 78 79
Lemma eq_None_not_Some {A} (mx : option A) : mx = None  ¬is_Some mx.
Proof. destruct mx; unfold is_Some; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx  None  is_Some mx.
Proof. rewrite eq_None_not_Some; apply dec_stable; tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
80 81

(** Lifting a relation point-wise to option *)
82 83 84
Inductive option_Forall2 {A B} (R: A  B  Prop) : option A  option B  Prop :=
  | Some_Forall2 x y : R x y  option_Forall2 R (Some x) (Some y)
  | None_Forall2 : option_Forall2 R None None.
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86 87 88 89 90 91 92 93
Definition option_relation {A B} (R: A  B  Prop) (P: A  Prop) (Q: B  Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.

94 95 96 97 98 99 100 101 102 103 104 105 106
Section Forall2.
  Context {A} (R : relation A).

  Global Instance option_Forall2_refl : Reflexive R  Reflexive (option_Forall2 R).
  Proof. intros ? [?|]; by constructor. Qed.
  Global Instance option_Forall2_sym : Symmetric R  Symmetric (option_Forall2 R).
  Proof. destruct 2; by constructor. Qed.
  Global Instance option_Forall2_trans : Transitive R  Transitive (option_Forall2 R).
  Proof. destruct 2; inversion_clear 1; constructor; etrans; eauto. Qed.
  Global Instance option_Forall2_equiv : Equivalence R  Equivalence (option_Forall2 R).
  Proof. destruct 1; split; apply _. Qed.
End Forall2.

Robbert Krebbers's avatar
Robbert Krebbers committed
107
(** Setoids *)
108 109
Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 ().

Robbert Krebbers's avatar
Robbert Krebbers committed
110
Section setoids.
111
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
112
  Implicit Types mx my : option A.
113 114

  Lemma equiv_option_Forall2 mx my : mx  my  option_Forall2 () mx my.
115
  Proof. done. Qed.
116

117
  Global Instance option_equivalence : Equivalence (() : relation (option A)).
118
  Proof. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121
  Global Instance Some_proper : Proper (() ==> ()) (@Some A).
  Proof. by constructor. Qed.
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
122
  Proof. intros x y; destruct 1; fold_leibniz; congruence. Qed.
123

124
  Lemma equiv_None mx : mx  None  mx = None.
125
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
126
  Lemma equiv_Some_inv_l mx my x :
127 128
    mx  my  mx = Some x   y, my = Some y  x  y.
  Proof. destruct 1; naive_solver. Qed.
129 130
  Lemma equiv_Some_inv_r mx my y :
    mx  my  my = Some y   x, mx = Some x  x  y.
131
  Proof. destruct 1; naive_solver. Qed.
132 133 134 135
  Lemma equiv_Some_inv_l' my x : Some x  my   x', Some x' = my  x  x'.
  Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
  Lemma equiv_Some_inv_r' mx y : mx  Some y   y', mx = Some y'  y  y'.
  Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed.
136

Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
  Global Instance is_Some_proper : Proper (() ==> iff) (@is_Some A).
  Proof. inversion_clear 1; split; eauto. Qed.
139 140 141
  Global Instance from_option_proper {B} (R : relation B) (f : A  B) :
    Proper (() ==> R) f  Proper (R ==> () ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
142 143
End setoids.

144 145
Typeclasses Opaque option_equiv.

Robbert Krebbers's avatar
Robbert Krebbers committed
146
(** Equality on [option] is decidable. *)
147 148 149 150 151 152
Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
  match mx with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
  match mx with Some _ => right (None_ne_Some _) | None => left eq_refl end.
Instance option_eq_dec {A} {dec :  x y : A, Decision (x = y)}
  (mx my : option A) : Decision (mx = my).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
Proof.
 refine
155 156
  match mx, my with
  | Some x, Some y => cast_if (decide (x = y))
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160 161 162
  | None, None => left _ | _, _ => right _
  end; clear dec; abstract congruence.
Defined.

(** * Monadic operations *)
Instance option_ret: MRet option := @Some.
163 164 165 166
Instance option_bind: MBind option := λ A B f mx,
  match mx with Some x => f x | None => None end.
Instance option_join: MJoin option := λ A mmx,
  match mmx with Some mx => mx | None => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Instance option_fmap: FMap option := @option_map.
168 169
Instance option_guard: MGuard option := λ P dec A f,
  match dec with left H => f H | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
Lemma fmap_is_Some {A B} (f : A  B) mx : is_Some (f <$> mx)  is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) mx y :
  f <$> mx = Some y   x, mx = Some x  y = f x.
Proof. destruct mx; naive_solver. Qed.
Lemma fmap_None {A B} (f : A  B) mx : f <$> mx = None  mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) mx :
  g  f <$> mx = g <$> f <$> mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A  B) mx :
  ( x, f x = g x)  f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
Lemma option_fmap_setoid_ext `{Equiv A, Equiv B} (f g : A  B) mx :
  ( x, f x  g x)  f <$> mx  g <$> mx.
Proof. destruct mx; constructor; auto. Qed.
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) mx :
  (f <$> mx) = g = mx = g  f.
Proof. by destruct mx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
Lemma option_bind_assoc {A B C} (f : A  option B)
193 194 195 196 197 198 199
  (g : B  option C) (mx : option A) : (mx = f) = g = mx = (mbind g  f).
Proof. by destruct mx; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A  option B) mx my :
  ( x, f x = g x)  mx = my  mx = f = my = g.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_bind_ext_fun {A B} (f g : A  option B) mx :
  ( x, f x = g x)  mx = f = mx = g.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
Proof. intros. by apply option_bind_ext. Qed.
201 202 203 204 205 206 207 208
Lemma bind_Some {A B} (f : A  option B) (mx : option A) y :
  mx = f = Some y   x, mx = Some x  f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_None {A B} (f : A  option B) (mx : option A) :
  mx = f = None  mx = None   x, mx = Some x  f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx = Some = mx.
Proof. by destruct mx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
209

210 211 212 213
Instance option_fmap_proper `{Equiv A, Equiv B} (f : A  B) :
  Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=option) f).
Proof. destruct 2; constructor; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A  B) :=
  maybe : B  option A.
Arguments maybe {_ _} _ {_} !_ /.
Class Maybe2 {A1 A2 B : Type} (c : A1  A2  B) :=
  maybe2 : B  option (A1 * A2).
Arguments maybe2 {_ _ _} _ {_} !_ /.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1  A2  A3  B) :=
  maybe3 : B  option (A1 * A2 * A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ /.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1  A2  A3  A4  B) :=
  maybe4 : B  option (A1 * A2 * A3 * A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ /.

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1  c2) := λ x,
  maybe c1 x = maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ /.

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.
Instance maybe_Some {A} : Maybe (@Some A) := id.
Arguments maybe_Some _ !_ /.

(** * Union, intersection and difference *)
242 243 244 245 246
Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
  | None, Some y => Some y
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248 249
  | None, None => None
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
250 251 252 253 254
  λ f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
Robbert Krebbers's avatar
Robbert Krebbers committed
255 256 257
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
258 259 260 261

Lemma option_union_Some {A} (mx my : option A) z :
  mx  my = Some z  mx = Some z  my = Some z.
Proof. destruct mx, my; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262

263 264 265 266
Class DiagNone {A B C} (f : option A  option B  option C) :=
  diag_none : f None None = None.

Section union_intersection_difference.
Robbert Krebbers's avatar
Robbert Krebbers committed
267
  Context {A} (f : A  A  option A).
268 269 270 271 272 273 274 275

  Global Instance union_with_diag_none : DiagNone (union_with f).
  Proof. reflexivity. Qed.
  Global Instance intersection_with_diag_none : DiagNone (intersection_with f).
  Proof. reflexivity. Qed.
  Global Instance difference_with_diag_none : DiagNone (difference_with f).
  Proof. reflexivity. Qed.
  Global Instance union_with_left_id : LeftId (=) None (union_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
276
  Proof. by intros [?|]. Qed.
277
  Global Instance union_with_right_id : RightId (=) None (union_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
278
  Proof. by intros [?|]. Qed.
279
  Global Instance union_with_comm : Comm (=) f  Comm (=) (union_with f).
280
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
281
  Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
282
  Proof. by intros [?|]. Qed.
283
  Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
284
  Proof. by intros [?|]. Qed.
285
  Global Instance difference_with_comm : Comm (=) f  Comm (=) (intersection_with f).
286
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
287
  Global Instance difference_with_right_id : RightId (=) None (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
288
  Proof. by intros [?|]. Qed.
289
End union_intersection_difference.
Robbert Krebbers's avatar
Robbert Krebbers committed
290 291 292 293 294

(** * Tactics *)
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
  | H : appcontext C [@mguard option _ ?P ?dec] |- _ =>
295 296
    change (@mguard option _ P dec) with (λ A (f : P  option A),
      match @decide P dec with left H' => f H' | _ => None end) in *;
Robbert Krebbers's avatar
Robbert Krebbers committed
297 298
    destruct_decide (@decide P dec) as Hx
  | |- appcontext C [@mguard option _ ?P ?dec] =>
299 300
    change (@mguard option _ P dec) with (λ A (f : P  option A),
      match @decide P dec with left H' => f H' | _ => None end) in *;
Robbert Krebbers's avatar
Robbert Krebbers committed
301 302 303 304 305
    destruct_decide (@decide P dec) as Hx
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.

306 307
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
  P  guard P; mx = mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
308
Proof. intros. by case_option_guard. Qed.
309 310
Lemma option_guard_False {A} P `{Decision P} (mx : option A) :
  ¬P  guard P; mx = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
Proof. intros. by case_option_guard. Qed.
312 313
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
  (P  Q)  guard P; mx = guard Q; mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
314 315
Proof. intros [??]. repeat case_option_guard; intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
316
Tactic Notation "simpl_option" "by" tactic3(tac) :=
317
  let assert_Some_None A mx H := first
Robbert Krebbers's avatar
Robbert Krebbers committed
318
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
319 320
      assert (mx = Some x') as H by tac
    | assert (mx = None) as H by tac ]
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322 323 324
  in repeat match goal with
  | H : appcontext [@mret _ _ ?A] |- _ =>
     change (@mret _ _ A) with (@Some A) in H
  | |- appcontext [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
325 326 327 328
  | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
329
  | H : context [from_option (A:=?A) _ _ ?mx] |- _ =>
330 331 332
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?mx with _ => _ end ] |- _ =>
    match type of mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
333
    | option ?A =>
334
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
335
    end
336 337 338 339
  | |- context [mbind (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
340
  | |- context [from_option (A:=?A) _ _ ?mx] =>
341 342 343
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [ match ?mx with _ => _ end ] =>
    match type of mx with
Robbert Krebbers's avatar
Robbert Krebbers committed
344
    | option ?A =>
345
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347 348 349 350 351 352 353 354
    end
  | H : context [decide _] |- _ => rewrite decide_True in H by tac
  | H : context [decide _] |- _ => rewrite decide_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
355 356 357 358
  | H : context [None  _] |- _ => rewrite (left_id_L None ()) in H
  | H : context [_  None] |- _ => rewrite (right_id_L None ()) in H
  | |- context [None  _] => rewrite (left_id_L None ())
  | |- context [_  None] => rewrite (right_id_L None ())
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  end.
360
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
361
  repeat match goal with
362
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
363
  | _ => progress simpl_option by tac
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365 366 367 368
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  | H : mbind (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (f x = my) in H|change (None = my) in H]
  | H : ?my = mbind (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = f x) in H|change (my = None) in H]
  | H : fmap (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (Some (f x) = my) in H|change (None = my) in H]
  | H : ?my = fmap (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = Some (f x)) in H|change (my = None) in H]
Robbert Krebbers's avatar
Robbert Krebbers committed
389 390 391
  | _ => progress case_decide
  | _ => progress case_option_guard
  end.
392
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.