derived.v 39.9 KB
Newer Older
1
From iris.base_logic Require Export primitive.
2
Set Default Proof Using "Type".
3
Import upred.uPred primitive.uPred.
4 5 6 7 8

Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Instance: Params (@uPred_iff) 1.
Infix "↔" := uPred_iff : uPred_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11 12 13 14 15 16 17 18
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, P at level 20,
   format "▷^ n  P") : uPred_scope.
Notation "▷? p P" := (uPred_laterN (Nat.b2n p) P)
  (at level 20, p at level 9, P at level 20,
   format "▷? p  P") : uPred_scope.

19 20 21 22 23
Definition uPred_always_if {M} (p : bool) (P : uPred M) : uPred M :=
  (if p then  P else P)%I.
Instance: Params (@uPred_always_if) 2.
Arguments uPred_always_if _ !_ _/.
Notation "□? p P" := (uPred_always_if p P)
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  (at level 20, p at level 9, P at level 20, format "□? p  P").
25

26 27
Definition uPred_except_0 {M} (P : uPred M) : uPred M :=  False  P.
Notation "◇ P" := (uPred_except_0 P)
28
  (at level 20, right associativity) : uPred_scope.
29 30
Instance: Params (@uPred_except_0) 1.
Typeclasses Opaque uPred_except_0.
31 32 33

Class TimelessP {M} (P : uPred M) := timelessP :  P   P.
Arguments timelessP {_} _ {_}.
34
Hint Mode TimelessP + ! : typeclass_instances.
35 36

Class PersistentP {M} (P : uPred M) := persistentP : P   P.
37
Hint Mode PersistentP - ! : typeclass_instances.
38
Arguments persistentP {_} _ {_}.
39
Hint Mode PersistentP + ! : typeclass_instances.
40

41
Module uPred.
42 43 44 45 46 47 48 49 50 51
Section derived.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)

(* Derived logical stuff *)
Lemma False_elim P : False  P.
52
Proof. by apply (pure_elim' False). Qed.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
Lemma True_intro P : P  True.
Proof. by apply pure_intro. Qed.

Lemma and_elim_l' P Q R : (P  R)  P  Q  R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q  R)  P  Q  R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P  Q)  P  Q  R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P  R)  P  Q  R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : (P  Ψ a)  P   a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A  uPred M) : (P   a, Ψ a)   a, P  Ψ a.
Proof. move=> HP a. by rewrite HP forall_elim. Qed.

Hint Resolve pure_intro.
Hint Resolve or_elim or_intro_l' or_intro_r'.
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.

Lemma impl_intro_l P Q R : (Q  P  R)  P  Q  R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim_l P Q : (P  Q)  P  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : P  (P  Q)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : (Q  P  R)  P  Q  R.
Proof. intros; apply impl_elim with P; auto. Qed.
84
Lemma impl_entails P Q : (P  Q)%I  P  Q.
85
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
86 87
Lemma entails_impl P Q : (P  Q)  (P  Q)%I.
Proof. intro. apply impl_intro_l. auto. Qed.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

Lemma and_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply and_mono. Qed.

Lemma or_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply or_mono. Qed.

Lemma impl_mono P P' Q Q' : (Q  P)  (P'  Q')  (P  P')  Q  Q'.
Proof.
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
  apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof.
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.

Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
130 131 132
Global Instance impl_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
133 134 135
Global Instance forall_mono' A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
136 137 138
Global Instance forall_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
139
Global Instance exist_mono' A :
140 141 142 143
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
Proof. intros P1 P2; apply exist_mono. Qed.

Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
  intros P; apply (anti_symm ()).
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Qed.
180 181 182 183 184
Lemma False_impl P : (False  P)  True.
Proof.
  apply (anti_symm ()); [by auto|].
  apply impl_intro_l. rewrite left_absorb. auto.
Qed.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

Lemma exists_impl_forall {A} P (Ψ : A  uPred M) :
  (( x : A, Ψ x)  P)   x : A, Ψ x  P.
Proof.
  apply equiv_spec; split.
  - apply forall_intro=>x. by rewrite -exist_intro.
  - apply impl_intro_r, impl_elim_r', exist_elim=>x.
    apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.

Lemma or_and_l P Q R : P  Q  R  (P  Q)  (P  R).
Proof.
  apply (anti_symm ()); first auto.
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P  Q  R  (P  R)  (Q  R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P  (Q  R)  P  Q  P  R.
Proof.
  apply (anti_symm ()); last auto.
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P  Q)  R  P  R  Q  R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
Proof.
  apply (anti_symm ()).
  - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
    by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A  uPred M) : ( a, Φ a)  P   a, Φ a  P.
Proof.
  rewrite -(comm _ P) and_exist_l. apply exist_proper=>a. by rewrite comm.
Qed.
221 222 223 224 225 226 227
Lemma or_exist {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof.
  apply (anti_symm ()).
  - apply exist_elim=> a. by rewrite -!(exist_intro a).
  - apply or_elim; apply exist_elim=> a; rewrite -(exist_intro a); auto.
Qed.
228

229
Lemma pure_elim φ Q R : (Q  ⌜φ⌝)  (φ  Q  R)  Q  R.
230 231 232 233
Proof.
  intros HQ HQR. rewrite -(idemp uPred_and Q) {1}HQ.
  apply impl_elim_l', pure_elim'=> ?. by apply entails_impl, HQR.
Qed.
Ralf Jung's avatar
Ralf Jung committed
234
Lemma pure_mono φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
235 236 237
Proof. intros; apply pure_elim with φ1; eauto. Qed.
Global Instance pure_mono' : Proper (impl ==> ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
238
Lemma pure_iff φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
239
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
240
Lemma pure_intro_l φ Q R : φ  (⌜φ⌝  Q  R)  Q  R.
241
Proof. intros ? <-; auto using pure_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
242
Lemma pure_intro_r φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
243
Proof. intros ? <-; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
244
Lemma pure_intro_impl φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
245
Proof. intros ? ->. eauto using pure_intro_l, impl_elim_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
246
Lemma pure_elim_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
247
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
248
Lemma pure_elim_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
249
Proof. intros; apply pure_elim with φ; eauto. Qed.
250

Ralf Jung's avatar
Ralf Jung committed
251
Lemma pure_True (φ : Prop) : φ  ⌜φ⌝  True.
252
Proof. intros; apply (anti_symm _); auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
253
Lemma pure_False (φ : Prop) : ¬φ  ⌜φ⌝  False.
254
Proof. intros; apply (anti_symm _); eauto using pure_elim. Qed.
255

Ralf Jung's avatar
Ralf Jung committed
256
Lemma pure_and φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
257 258 259 260 261
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[??]; auto.
  - eapply (pure_elim φ1); [auto|]=> ?. eapply (pure_elim φ2); auto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
262
Lemma pure_or φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
263 264 265 266 267
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[?|?]; auto.
  - apply or_elim; eapply pure_elim; eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
268
Lemma pure_impl φ1 φ2 : ⌜φ1  φ2  (⌜φ1  ⌜φ2).
269 270 271 272
Proof.
  apply (anti_symm _).
  - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver.
  - rewrite -pure_forall_2. apply forall_intro=> ?.
273
    by rewrite -(left_id True uPred_and (_→_))%I (pure_True φ1) // impl_elim_r.
274
Qed.
Ralf Jung's avatar
Ralf Jung committed
275
Lemma pure_forall {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
276 277 278 279
Proof.
  apply (anti_symm _); auto using pure_forall_2.
  apply forall_intro=> x. eauto using pure_mono.
Qed.
Ralf Jung's avatar
Ralf Jung committed
280
Lemma pure_exist {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
281 282 283 284 285 286
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[x ?]. rewrite -(exist_intro x); auto.
  - apply exist_elim=> x. eauto using pure_mono.
Qed.

287
Lemma internal_eq_refl' {A : ofeT} (a : A) P : P  a  a.
288 289
Proof. rewrite (True_intro P). apply internal_eq_refl. Qed.
Hint Resolve internal_eq_refl'.
290
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a  b  P  a  b.
291
Proof. by intros ->. Qed.
292
Lemma internal_eq_sym {A : ofeT} (a b : A) : a  b  b  a.
293
Proof. apply (internal_eq_rewrite a b (λ b, b  a)%I); auto. solve_proper. Qed.
294 295 296
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A  uPred M) P
  {HΨ : Contractive Ψ} : (P   (a  b))  (P  Ψ a)  P  Ψ b.
Proof.
297 298
  move: HΨ=> /contractiveI HΨ Heq ?.
  apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -HΨ.
299
Qed.
300

Ralf Jung's avatar
Ralf Jung committed
301
Lemma pure_impl_forall φ P : (⌜φ⌝  P)  ( _ : φ, P).
302 303
Proof.
  apply (anti_symm _).
304
  - apply forall_intro=> ?. by rewrite pure_True // left_id.
305 306
  - apply impl_intro_l, pure_elim_l=> Hφ. by rewrite (forall_elim Hφ).
Qed.
Ralf Jung's avatar
Ralf Jung committed
307
Lemma pure_alt φ : ⌜φ⌝   _ : φ, True.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
Proof.
  apply (anti_symm _).
  - eapply pure_elim; eauto=> H. rewrite -(exist_intro H); auto.
  - by apply exist_elim, pure_intro.
Qed.
Lemma and_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); first apply forall_intro=> -[]; auto.
  apply and_intro. by rewrite (forall_elim true). by rewrite (forall_elim false).
Qed.
Lemma or_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); last apply exist_elim=> -[]; auto.
  apply or_elim. by rewrite -(exist_intro true). by rewrite -(exist_intro false).
Qed.

Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M).
Proof. unfold uPred_iff; solve_proper. Qed.
Global Instance iff_proper :
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.

Lemma iff_refl Q P : Q  P  P.
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
331
Lemma iff_equiv P Q : (P  Q)%I  (P  Q).
332 333
Proof.
  intros HPQ; apply (anti_symm ());
334
    apply impl_entails; rewrite /uPred_valid HPQ /uPred_iff; auto.
335
Qed.
336
Lemma equiv_iff P Q : (P  Q)  (P  Q)%I.
337
Proof. intros ->; apply iff_refl. Qed.
338
Lemma internal_eq_iff P Q : P  Q  P  Q.
339
Proof.
340 341
  apply (internal_eq_rewrite P Q (λ Q, P  Q))%I;
    first solve_proper; auto using iff_refl.
342 343 344 345
Qed.

(* Derived BI Stuff *)
Hint Resolve sep_mono.
346
Lemma sep_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
347
Proof. by intros; apply sep_mono. Qed.
348
Lemma sep_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
349 350 351 352 353 354
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
355
Lemma wand_mono P P' Q Q' : (Q  P)  (P'  Q')  (P - P')  Q - Q'.
356 357 358 359 360
Proof.
  intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
361 362 363
Global Instance wand_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
364 365 366 367 368 369 370 371 372 373 374 375

Global Instance sep_comm : Comm () (@uPred_sep M).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc () (@uPred_sep M).
Proof.
  intros P Q R; apply (anti_symm _); auto using sep_assoc'.
  by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto using True_sep_1, True_sep_2. Qed.
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Proof. by intros P; rewrite comm left_id. Qed.
376
Lemma sep_elim_l P Q : P  Q  P.
377
Proof. by rewrite (True_intro Q) right_id. Qed.
378 379 380
Lemma sep_elim_r P Q : P  Q  Q.
Proof. by rewrite (comm ())%I; apply sep_elim_l. Qed.
Lemma sep_elim_l' P Q R : (P  R)  P  Q  R.
381
Proof. intros ->; apply sep_elim_l. Qed.
382
Lemma sep_elim_r' P Q R : (Q  R)  P  Q  R.
383 384
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
385
Lemma sep_intro_True_l P Q R : P%I  (R  Q)  R  P  Q.
386
Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
387
Lemma sep_intro_True_r P Q R : (R  P)  Q%I  R  P  Q.
388
Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
389
Lemma sep_elim_True_l P Q R : P  (P  R  Q)  R  Q.
390
Proof. by intros HP; rewrite -HP left_id. Qed.
391
Lemma sep_elim_True_r P Q R : P  (R  P  Q)  R  Q.
392
Proof. by intros HP; rewrite -HP right_id. Qed.
393
Lemma wand_intro_l P Q R : (Q  P  R)  P  Q - R.
394
Proof. rewrite comm; apply wand_intro_r. Qed.
395
Lemma wand_elim_l P Q : (P - Q)  P  Q.
396
Proof. by apply wand_elim_l'. Qed.
397
Lemma wand_elim_r P Q : P  (P - Q)  Q.
398
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
399
Lemma wand_elim_r' P Q R : (Q  P - R)  P  Q  R.
400
Proof. intros ->; apply wand_elim_r. Qed.
401
Lemma wand_apply P Q R S : (P  Q - R)  (S  P  Q)  S  R.
Ralf Jung's avatar
Ralf Jung committed
402
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
403
Lemma wand_frame_l P Q R : (Q - R)  P  Q - P  R.
404
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
405
Lemma wand_frame_r P Q R : (Q - R)  Q  P - R  P.
406
Proof.
407
  apply wand_intro_l. rewrite ![(_  P)%I]comm -assoc.
408 409
  apply sep_mono_r, wand_elim_r.
Qed.
410
Lemma wand_diag P : (P - P)  True.
411
Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed.
412
Lemma wand_True P : (True - P)  P.
413 414
Proof.
  apply (anti_symm _); last by auto using wand_intro_l.
415
  eapply sep_elim_True_l; last by apply wand_elim_r. done.
416
Qed.
417
Lemma wand_entails P Q : (P - Q)%I  P  Q.
418 419 420
Proof.
  intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r.
Qed.
421 422
Lemma entails_wand P Q : (P  Q)  (P - Q)%I.
Proof. intro. apply wand_intro_l. auto. Qed.
423
Lemma wand_curry P Q R : (P - Q - R)  (P  Q - R).
424 425 426 427 428 429
Proof.
  apply (anti_symm _).
  - apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
  - do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.

430
Lemma sep_and P Q : (P  Q)  (P  Q).
431
Proof. auto. Qed.
432
Lemma impl_wand P Q : (P  Q)  P - Q.
433
Proof. apply wand_intro_r, impl_elim with P; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
434
Lemma pure_elim_sep_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
435
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
436
Lemma pure_elim_sep_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
437 438 439 440 441 442 443
Proof. intros; apply pure_elim with φ; eauto. Qed.

Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.

444
Lemma entails_equiv_and P Q : (P  Q  P)  (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
445
Proof. split. by intros ->; auto. intros; apply (anti_symm _); auto. Qed.
446
Lemma sep_and_l P Q R : P  (Q  R)  (P  Q)  (P  R).
447
Proof. auto. Qed.
448
Lemma sep_and_r P Q R : (P  Q)  R  (P  R)  (Q  R).
449
Proof. auto. Qed.
450
Lemma sep_or_l P Q R : P  (Q  R)  (P  Q)  (P  R).
451 452 453 454
Proof.
  apply (anti_symm ()); last by eauto 8.
  apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
455
Lemma sep_or_r P Q R : (P  Q)  R  (P  R)  (Q  R).
456
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
457
Lemma sep_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
458 459 460 461 462 463
Proof.
  intros; apply (anti_symm ()).
  - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
Qed.
464
Lemma sep_exist_r {A} (Φ: A  uPred M) Q: ( a, Φ a)  Q   a, Φ a  Q.
465
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
466
Lemma sep_forall_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
467
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
468
Lemma sep_forall_r {A} (Φ : A  uPred M) Q : ( a, Φ a)  Q   a, Φ a  Q.
469 470 471 472 473 474 475 476 477 478 479 480 481
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.

(* Always derived *)
Hint Resolve always_mono always_elim.
Global Instance always_mono' : Proper (() ==> ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.
Global Instance always_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.

Lemma always_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply always_idemp. Qed.

Ralf Jung's avatar
Ralf Jung committed
482
Lemma always_pure φ :  ⌜φ⌝  ⌜φ⌝.
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
Proof. apply (anti_symm _); auto using always_pure_2. Qed.
Lemma always_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma always_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_exist_1.
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
Lemma always_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt always_forall. by apply forall_proper=> -[]. Qed.
Lemma always_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt always_exist. by apply exist_proper=> -[]. Qed.
Lemma always_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -always_and.
  apply always_mono, impl_elim with P; auto.
Qed.
503
Lemma always_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
504 505
Proof.
  apply (anti_symm ()); auto using always_elim.
506
  apply (internal_eq_rewrite a b (λ b,  (a  b))%I); auto.
507
  { intros n; solve_proper. }
508
  rewrite -(internal_eq_refl a) always_pure; auto.
509 510
Qed.

511
Lemma always_and_sep P Q :  (P  Q)   (P  Q).
512
Proof. apply (anti_symm ()); auto using always_and_sep_1. Qed.
513
Lemma always_and_sep_l' P Q :  P  Q   P  Q.
514
Proof. apply (anti_symm ()); auto using always_and_sep_l_1. Qed.
515
Lemma always_and_sep_r' P Q : P   Q  P   Q.
516
Proof. by rewrite !(comm _ P) always_and_sep_l'. Qed.
517
Lemma always_sep P Q :  (P  Q)   P   Q.
518
Proof. by rewrite -always_and_sep -always_and_sep_l' always_and. Qed.
519
Lemma always_sep_dup' P :  P   P   P.
520 521
Proof. by rewrite -always_sep -always_and_sep (idemp _). Qed.

522
Lemma always_wand P Q :  (P - Q)   P -  Q.
523
Proof. by apply wand_intro_r; rewrite -always_sep wand_elim_l. Qed.
524
Lemma always_wand_impl P Q :  (P - Q)   (P  Q).
525 526 527 528 529
Proof.
  apply (anti_symm ()); [|by rewrite -impl_wand].
  apply always_intro', impl_intro_r.
  by rewrite always_and_sep_l' always_elim wand_elim_l.
Qed.
530
Lemma always_entails_l' P Q : (P   Q)  P   Q  P.
531
Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
532
Lemma always_entails_r' P Q : (P   Q)  P  P   Q.
533 534
Proof. intros; rewrite -always_and_sep_r'; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
535 536 537 538
Lemma always_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite always_later IH. Qed.


539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
(* Later derived *)
Lemma later_proper P Q : (P  Q)   P   Q.
Proof. by intros ->. Qed.
Hint Resolve later_mono later_proper.
Global Instance later_mono' : Proper (() ==> ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.
Global Instance later_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.

Lemma later_intro P : P   P.
Proof.
  rewrite -(and_elim_l ( P) P) -(löb ( P  P)).
  apply impl_intro_l. by rewrite {1}(and_elim_r ( P)).
Qed.

Lemma later_True :  True  True.
Proof. apply (anti_symm ()); auto using later_intro. Qed.
Lemma later_forall {A} (Φ : A  uPred M) : (  a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); auto using later_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma later_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply: anti_symm; [|apply exist_elim; eauto using exist_intro].
  rewrite later_exist_false. apply or_elim; last done.
  rewrite -(exist_intro inhabitant); auto.
Qed.
Lemma later_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt later_forall. by apply forall_proper=> -[]. Qed.
Lemma later_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt later_exist. by apply exist_proper=> -[]. Qed.
Lemma later_impl P Q :  (P  Q)   P   Q.
Proof. apply impl_intro_l; rewrite -later_and; eauto using impl_elim. Qed.
575
Lemma later_wand P Q :  (P - Q)   P -  Q.
576 577 578 579 580
Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.


Robbert Krebbers's avatar
Robbert Krebbers committed
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
(* Iterated later modality *)
Global Instance laterN_ne n m : Proper (dist n ==> dist n) (@uPred_laterN M m).
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
  Proper (() ==> ()) (@uPred_laterN M m) := ne_proper _.

Lemma laterN_0 P : ^0 P  P.
Proof. done. Qed.
Lemma later_laterN n P : ^(S n) P   ^n P.
Proof. done. Qed.
Lemma laterN_later n P : ^(S n) P  ^n  P.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_plus n1 n2 P : ^(n1 + n2) P  ^n1 ^n2 P.
Proof. induction n1; simpl; auto. Qed.
Lemma laterN_le n1 n2 P : n1  n2  ^n1 P  ^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_mono n P Q : (P  Q)  ^n P  ^n Q.
Proof. induction n; simpl; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
  Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.

Lemma laterN_intro n P : P  ^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_True n : ^n True  True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_forall {A} n (Φ : A  uPred M) : (^n  a, Φ a)  ( a, ^n Φ a).
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall; auto. Qed.
Lemma laterN_exist `{Inhabited A} n (Φ : A  uPred M) :
  (^n  a, Φ a)   a, ^n Φ a.
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist; auto. Qed.
Lemma laterN_and n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_and; auto. Qed.
Lemma laterN_or n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_or; auto. Qed.
Lemma laterN_impl n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof.
  apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_sep n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep; auto. Qed.
Lemma laterN_wand n P Q : ^n (P - Q)  ^n P - ^n Q.
Proof.
  apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.

633 634 635 636 637 638 639 640 641 642 643 644 645
(* Conditional always *)
Global Instance always_if_ne n p : Proper (dist n ==> dist n) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_proper p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_mono p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.

Lemma always_if_elim p P : ?p P  P.
Proof. destruct p; simpl; auto using always_elim. Qed.
Lemma always_elim_if p P :  P  ?p P.
Proof. destruct p; simpl; auto using always_elim. Qed.

Ralf Jung's avatar
Ralf Jung committed
646
Lemma always_if_pure p φ : ?p ⌜φ⌝  ⌜φ⌝.
647 648 649 650 651 652 653
Proof. destruct p; simpl; auto using always_pure. Qed.
Lemma always_if_and p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_and. Qed.
Lemma always_if_or p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_or. Qed.
Lemma always_if_exist {A} p (Ψ : A  uPred M) : (?p  a, Ψ a)   a, ?p Ψ a.
Proof. destruct p; simpl; auto using always_exist. Qed.
654
Lemma always_if_sep p P Q : ?p (P  Q)  ?p P  ?p Q.
655 656 657 658 659 660
Proof. destruct p; simpl; auto using always_sep. Qed.
Lemma always_if_later p P : ?p  P   ?p P.
Proof. destruct p; simpl; auto using always_later. Qed.


(* True now *)
661
Global Instance except_0_ne n : Proper (dist n ==> dist n) (@uPred_except_0 M).
662
Proof. solve_proper. Qed.
663
Global Instance except_0_proper : Proper (() ==> ()) (@uPred_except_0 M).
664
Proof. solve_proper. Qed.
665
Global Instance except_0_mono' : Proper (() ==> ()) (@uPred_except_0 M).
666
Proof. solve_proper. Qed.
667 668
Global Instance except_0_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_except_0 M).
669 670
Proof. solve_proper. Qed.

671 672 673
Lemma except_0_intro P : P   P.
Proof. rewrite /uPred_except_0; auto. Qed.
Lemma except_0_mono P Q : (P  Q)   P   Q.
674
Proof. by intros ->. Qed.
675 676 677 678 679 680 681 682 683
Lemma except_0_idemp P :   P   P.
Proof. rewrite /uPred_except_0; auto. Qed.

Lemma except_0_True :  True  True.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_or P Q :  (P  Q)   P   Q.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_and P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_except_0 or_and_l. Qed.
684
Lemma except_0_sep P Q :  (P  Q)   P   Q.
685 686
Proof.
  rewrite /uPred_except_0. apply (anti_symm _).
687 688 689 690
  - apply or_elim; last by auto.
    by rewrite -!or_intro_l -always_pure -always_later -always_sep_dup'.
  - rewrite sep_or_r sep_elim_l sep_or_l; auto.
Qed.
691
Lemma except_0_forall {A} (Φ : A  uPred M) :  ( a, Φ a)   a,  Φ a.
692
Proof. apply forall_intro=> a. by rewrite (forall_elim a). Qed.
693
Lemma except_0_exist {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
694
Proof. apply exist_elim=> a. by rewrite (exist_intro a). Qed.
695 696 697 698 699 700
Lemma except_0_later P :   P   P.
Proof. by rewrite /uPred_except_0 -later_or False_or. Qed.
Lemma except_0_always P :   P    P.
Proof. by rewrite /uPred_except_0 always_or always_later always_pure. Qed.
Lemma except_0_always_if p P :  ?p P  ?p  P.
Proof. destruct p; simpl; auto using except_0_always. Qed.
701
Lemma except_0_frame_l P Q : P   Q   (P  Q).
702
Proof. by rewrite {1}(except_0_intro P) except_0_sep. Qed.
703
Lemma except_0_frame_r P Q :  P  Q   (P  Q).
704
Proof. by rewrite {1}(except_0_intro Q) except_0_sep. Qed.
705 706 707 708 709 710 711 712 713 714 715 716

(* Own and valid derived *)
Lemma always_ownM (a : M) : Persistent a   uPred_ownM a  uPred_ownM a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  by rewrite {1}always_ownM_core persistent_core.
Qed.
Lemma ownM_invalid (a : M) : ¬ {0} a  uPred_ownM a  False.
Proof. by intros; rewrite ownM_valid cmra_valid_elim. Qed.
Global Instance ownM_mono : Proper (flip () ==> ()) (@uPred_ownM M).
Proof. intros a b [b' ->]. rewrite ownM_op. eauto. Qed.
Lemma ownM_empty' : uPred_ownM   True.
717
Proof. apply (anti_symm _); first by auto. apply ownM_empty. Qed.
718 719 720 721 722 723 724 725 726 727 728
Lemma always_cmra_valid {A : cmraT} (a : A) :   a   a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  apply:always_cmra_valid_1.
Qed.

(** * Derived rules *)
Global Instance bupd_mono' : Proper (() ==> ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
Global Instance bupd_flip_mono' : Proper (flip () ==> flip ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
729
Lemma bupd_frame_l R Q : (R  |==> Q) == R  Q.
730
Proof. rewrite !(comm _ R); apply bupd_frame_r. Qed.
731
Lemma bupd_wand_l P Q : (P - Q)  (|==> P) == Q.
732
Proof. by rewrite bupd_frame_l wand_elim_l. Qed.
733
Lemma bupd_wand_r P Q : (|==> P)  (P - Q) == Q.
734
Proof. by rewrite bupd_frame_r wand_elim_r. Qed.
735
Lemma bupd_sep P Q : (|==> P)  (|==> Q) == P  Q.
736 737 738 739 740 741
Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed.
Lemma bupd_ownM_update x y : x ~~> y  uPred_ownM x  |==> uPred_ownM y.
Proof.
  intros; rewrite (bupd_ownM_updateP _ (y =)); last by apply cmra_update_updateP.
  by apply bupd_mono, exist_elim=> y'; apply pure_elim_l=> ->.
Qed.
742
Lemma except_0_bupd P :  (|==> P)  (|==>  P).
743
Proof.
744
  rewrite /uPred_except_0. apply or_elim; auto using bupd_mono.
745 746 747 748
  by rewrite -bupd_intro -or_intro_l.
Qed.

(* Timeless instances *)
Ralf Jung's avatar
Ralf Jung committed
749
Global Instance pure_timeless φ : TimelessP (⌜φ⌝ : uPred M)%I.
750 751 752 753 754 755 756
Proof.
  rewrite /TimelessP pure_alt later_exist_false. by setoid_rewrite later_True.
Qed.
Global Instance valid_timeless {A : cmraT} `{CMRADiscrete A} (a : A) :
  TimelessP ( a : uPred M)%I.
Proof. rewrite /TimelessP !discrete_valid. apply (timelessP _). Qed.
Global Instance and_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
757
Proof. intros; rewrite /TimelessP except_0_and later_and; auto. Qed.
758
Global Instance or_timeless P Q : TimelessP P  TimelessP Q  TimelessP (P  Q).
759
Proof. intros; rewrite /TimelessP except_0_or later_or; auto. Qed.
760 761 762 763 764
Global Instance impl_timeless P Q : TimelessP Q  TimelessP (P  Q).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, impl_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
765
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
766 767
  by rewrite assoc (comm _ _ P) -assoc !impl_elim_r.
Qed.
768
Global Instance sep_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
769
Proof. intros; rewrite /TimelessP except_0_sep later_sep; auto. Qed.
770
Global Instance wand_timeless P Q : TimelessP Q  TimelessP (P - Q).
771 772 773 774
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, wand_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
775
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
776 777 778 779 780 781 782 783 784
  rewrite -(always_pure) -always_later always_and_sep_l'.
  by rewrite assoc (comm _ _ P) -assoc -always_and_sep_l' impl_elim_r wand_elim_r.
Qed.
Global Instance forall_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono; first done. apply forall_intro=> x.
  rewrite -(löb (Ψ x)); apply impl_intro_l.
785
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
786 787 788 789 790 791
  by rewrite impl_elim_r (forall_elim x).
Qed.
Global Instance exist_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> ?. rewrite later_exist_false. apply or_elim.
792
  - rewrite /uPred_except_0; auto.
793 794 795
  - apply exist_elim=> x. rewrite -(exist_intro x); auto.
Qed.
Global Instance always_timeless P : TimelessP P  TimelessP ( P).
796
Proof