coq_tactics.v 31.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export upred.
2
From iris.algebra Require Import upred_big_op upred_tactics.
3
From iris.proofmode Require Export environments classes.
4
From iris.prelude Require Import stringmap hlist.
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6 7 8 9 10 11 12 13
Import uPred.

Local Notation "Γ !! j" := (env_lookup j Γ).
Local Notation "x ← y ; z" := (match y with Some x => z | None => None end).
Local Notation "' ( x1 , x2 ) ← y ; z" :=
  (match y with Some (x1,x2) => z | None => None end).
Local Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
  (match y with Some (x1,x2,x3) => z | None => None end).

14
Record envs (M : ucmraT) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17 18 19 20 21 22 23 24 25 26 27
  Envs { env_persistent : env (uPred M); env_spatial : env (uPred M) }.
Add Printing Constructor envs.
Arguments Envs {_} _ _.
Arguments env_persistent {_} _.
Arguments env_spatial {_} _.

Record envs_wf {M} (Δ : envs M) := {
  env_persistent_valid : env_wf (env_persistent Δ);
  env_spatial_valid : env_wf (env_spatial Δ);
  envs_disjoint i : env_persistent Δ !! i = None  env_spatial Δ !! i = None
}.

Coercion of_envs {M} (Δ : envs M) : uPred M :=
28
  ( envs_wf Δ   [] env_persistent Δ  [] env_spatial Δ)%I.
29 30 31 32 33 34
Instance: Params (@of_envs) 1.

Record envs_Forall2 {M} (R : relation (uPred M)) (Δ1 Δ2 : envs M) : Prop := {
  env_persistent_Forall2 : env_Forall2 R (env_persistent Δ1) (env_persistent Δ2);
  env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36 37
Definition envs_dom {M} (Δ : envs M) : list string :=
  env_dom (env_persistent Δ) ++ env_dom (env_spatial Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Definition envs_lookup {M} (i : string) (Δ : envs M) : option (bool * uPred M) :=
  let (Γp,Γs) := Δ in
  match env_lookup i Γp with
  | Some P => Some (true, P) | None => P  env_lookup i Γs; Some (false, P)
  end.

Definition envs_delete {M} (i : string) (p : bool) (Δ : envs M) : envs M :=
  let (Γp,Γs) := Δ in
  match p with
  | true => Envs (env_delete i Γp) Γs | false => Envs Γp (env_delete i Γs)
  end.

Definition envs_lookup_delete {M} (i : string)
    (Δ : envs M) : option (bool * uPred M * envs M) :=
  let (Γp,Γs) := Δ in
  match env_lookup_delete i Γp with
  | Some (P,Γp') => Some (true, P, Envs Γp' Γs)
  | None => '(P,Γs')  env_lookup_delete i Γs; Some (false, P, Envs Γp Γs')
  end.

Definition envs_app {M} (p : bool)
    (Γ : env (uPred M)) (Δ : envs M) : option (envs M) :=
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_app Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_app Γ Γs; Some (Envs Γp Γs')
  end.

Definition envs_simple_replace {M} (i : string) (p : bool) (Γ : env (uPred M))
    (Δ : envs M) : option (envs M) :=
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_replace i Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_replace i Γ Γs; Some (Envs Γp Γs')
  end.

Definition envs_replace {M} (i : string) (p q : bool) (Γ : env (uPred M))
    (Δ : envs M) : option (envs M) :=
  if eqb p q then envs_simple_replace i p Γ Δ
  else envs_app q Γ (envs_delete i p Δ).

80 81
(* if [lr = false] then [result = (hyps named js, remaining hyps)],
   if [lr = true] then [result = (remaining hyps, hyps named js)] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
82 83 84 85 86 87 88 89 90
Definition envs_split {M}
    (lr : bool) (js : list string) (Δ : envs M) : option (envs M * envs M) :=
  let (Γp,Γs) := Δ in
  '(Γs1,Γs2)  env_split js Γs;
  match lr with
  | false  => Some (Envs Γp Γs1, Envs Γp Γs2)
  | true => Some (Envs Γp Γs2, Envs Γp Γs1)
  end.

91
Definition env_spatial_is_nil {M} (Δ : envs M) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93
  if env_spatial Δ is Enil then true else false.

94 95 96
Definition envs_clear_spatial {M} (Δ : envs M) : envs M :=
  Envs (env_persistent Δ) Enil.

Robbert Krebbers's avatar
Robbert Krebbers committed
97 98
(* Coq versions of the tactics *)
Section tactics.
99
Context {M : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102 103
Implicit Types Γ : env (uPred M).
Implicit Types Δ : envs M.
Implicit Types P Q : uPred M.

104
Lemma of_envs_def Δ :
105
  of_envs Δ = ( envs_wf Δ   [] env_persistent Δ  [] env_spatial Δ)%I.
106 107
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
108 109 110 111 112 113 114 115 116 117
Lemma envs_lookup_delete_Some Δ Δ' i p P :
  envs_lookup_delete i Δ = Some (p,P,Δ')
   envs_lookup i Δ = Some (p,P)  Δ' = envs_delete i p Δ.
Proof.
  rewrite /envs_lookup /envs_delete /envs_lookup_delete.
  destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
  destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.

Lemma envs_lookup_sound Δ i p P :
118
  envs_lookup i Δ = Some (p,P)  Δ  ?p P  envs_delete i p Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
Proof.
120
  rewrite /envs_lookup /envs_delete /of_envs=>?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
  - rewrite (env_lookup_perm Γp) //= always_and_sep always_sep.
123
    ecancel [ [] _;  P; [] _]%I; apply pure_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
124 125 126 127
    destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
    rewrite (env_lookup_perm Γs) //=.
128
    ecancel [ [] _; P; [] _]%I; apply pure_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
129 130 131 132
    destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh.
Qed.
Lemma envs_lookup_sound' Δ i p P :
133
  envs_lookup i Δ = Some (p,P)  Δ  P  envs_delete i p Δ.
134
Proof. intros. rewrite envs_lookup_sound //. by rewrite always_if_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Lemma envs_lookup_persistent_sound Δ i P :
136
  envs_lookup i Δ = Some (true,P)  Δ   P  Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
Proof.
138
  intros. apply (always_entails_l _ _). by rewrite envs_lookup_sound // sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141
Qed.

Lemma envs_lookup_split Δ i p P :
142
  envs_lookup i Δ = Some (p,P)  Δ  ?p P  (?p P - Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
Proof.
144
  rewrite /envs_lookup /of_envs=>?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
145 146
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
  - rewrite (env_lookup_perm Γp) //= always_and_sep always_sep.
147
    rewrite pure_equiv // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
148 149
    cancel [ P]%I. apply wand_intro_l. solve_sep_entails.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
150
    rewrite (env_lookup_perm Γs) //=. rewrite pure_equiv // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152 153 154
    cancel [P]. apply wand_intro_l. solve_sep_entails.
Qed.

Lemma envs_lookup_delete_sound Δ Δ' i p P :
155
  envs_lookup_delete i Δ = Some (p,P,Δ')  Δ  ?p P  Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound. Qed.
Lemma envs_lookup_delete_sound' Δ Δ' i p P :
158
  envs_lookup_delete i Δ = Some (p,P,Δ')  Δ  P  Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
159 160
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound'. Qed.

161
Lemma envs_app_sound Δ Δ' p Γ : envs_app p Γ Δ = Some Δ'  Δ  ?p [] Γ - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
Proof.
163
  rewrite /of_envs /envs_app=> ?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165 166
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
167
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170 171
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γp') //.
172 173
      rewrite big_and_app always_and_sep always_sep (big_sep_and Γ).
      solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
176
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179 180 181 182 183 184
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γs') // big_sep_app. solve_sep_entails.
Qed.

Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
  envs_simple_replace i p Γ Δ = Some Δ' 
185
  envs_delete i p Δ  ?p [] Γ - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
186 187
Proof.
  rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
188
  apply pure_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
189 190
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
191
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193 194 195
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γp') //.
196 197
      rewrite big_and_app always_and_sep always_sep (big_sep_and Γ).
      solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
200
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
201 202 203 204 205 206 207 208
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γs') // big_sep_app. solve_sep_entails.
Qed.

Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
209
  Δ  ?p P  (?p [] Γ - Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
210 211 212
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.

Lemma envs_replace_sound' Δ Δ' i p q Γ :
213
  envs_replace i p q Γ Δ = Some Δ'  envs_delete i p Δ  ?q [] Γ - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217 218 219 220 221
Proof.
  rewrite /envs_replace; destruct (eqb _ _) eqn:Hpq.
  - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
  - apply envs_app_sound.
Qed.

Lemma envs_replace_sound Δ Δ' i p q P Γ :
  envs_lookup i Δ = Some (p,P)  envs_replace i p q Γ Δ = Some Δ' 
222
  Δ  ?p P  (?q [] Γ - Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
223 224 225
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.

Lemma envs_split_sound Δ lr js Δ1 Δ2 :
226
  envs_split lr js Δ = Some (Δ1,Δ2)  Δ  Δ1  Δ2.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
Proof.
228
  rewrite /envs_split /of_envs=> ?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
229 230
  destruct Δ as [Γp Γs], (env_split js _) as [[Γs1 Γs2]|] eqn:?; simplify_eq/=.
  rewrite (env_split_perm Γs) // big_sep_app {1}always_sep_dup'.
231
  destruct lr; simplify_eq/=; cancel [ [] Γp;  [] Γp; [] Γs1; [] Γs2]%I;
232
    destruct Hwf; apply sep_intro_True_l; apply pure_intro; constructor;
Robbert Krebbers's avatar
Robbert Krebbers committed
233 234 235 236
      naive_solver eauto using env_split_wf_1, env_split_wf_2,
      env_split_fresh_1, env_split_fresh_2.
Qed.

237
Lemma envs_clear_spatial_sound Δ : Δ  envs_clear_spatial Δ  [] env_spatial Δ.
238
Proof.
239 240
  rewrite /of_envs /envs_clear_spatial /=; apply pure_elim_sep_l=> Hwf.
  rewrite right_id -assoc; apply sep_intro_True_l; [apply pure_intro|done].
241 242 243
  destruct Hwf; constructor; simpl; auto using Enil_wf.
Qed.

244
Lemma env_fold_wand Γ Q : env_fold uPred_wand Q Γ  ([] Γ - Q).
245 246 247 248 249
Proof.
  revert Q; induction Γ as [|Γ IH i P]=> Q /=; [by rewrite wand_True|].
  by rewrite IH wand_curry (comm uPred_sep).
Qed.

250 251
Lemma env_spatial_is_nil_persistent Δ :
  env_spatial_is_nil Δ = true  PersistentP Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
252
Proof. intros; destruct Δ as [? []]; simplify_eq/=; apply _. Qed.
253
Hint Immediate env_spatial_is_nil_persistent : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
Global Instance envs_Forall2_refl (R : relation (uPred M)) :
  Reflexive R  Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Global Instance envs_Forall2_sym (R : relation (uPred M)) :
  Symmetric R  Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Global Instance envs_Forall2_trans (R : relation (uPred M)) :
  Transitive R  Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Global Instance envs_Forall2_antisymm (R R' : relation (uPred M)) :
  AntiSymm R R'  AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Lemma envs_Forall2_impl (R R' : relation (uPred M)) Δ1 Δ2 :
  envs_Forall2 R Δ1 Δ2  ( P Q, R P Q  R' P Q)  envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.

Global Instance of_envs_mono : Proper (envs_Forall2 () ==> ()) (@of_envs M).
Proof.
  intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; unfold of_envs; simpl in *.
274 275
  apply pure_elim_sep_l=>Hwf. apply sep_intro_True_l.
  - destruct Hwf; apply pure_intro; constructor;
276 277 278 279 280
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - by repeat f_equiv.
Qed.
Global Instance of_envs_proper : Proper (envs_Forall2 () ==> ()) (@of_envs M).
Proof.
281 282
  intros Δ1 Δ2 HΔ; apply (anti_symm ()); apply of_envs_mono;
    eapply (envs_Forall2_impl ()); [| |symmetry|]; eauto using equiv_entails.
283 284 285 286 287
Qed.
Global Instance Envs_mono (R : relation (uPred M)) :
  Proper (env_Forall2 R ==> env_Forall2 R ==> envs_Forall2 R) (@Envs M).
Proof. by constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
288
(** * Adequacy *)
289
Lemma tac_adequate P : (Envs Enil Enil  P)  True  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
Proof.
291 292
  intros <-. rewrite /of_envs /= always_pure !right_id.
  apply pure_intro; repeat constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
293 294 295
Qed.

(** * Basic rules *)
296
Lemma tac_assumption Δ i p P Q :
297
  envs_lookup i Δ = Some (p,P)  FromAssumption p P Q  Δ  Q.
298
Proof. intros. by rewrite envs_lookup_sound // sep_elim_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
299 300 301 302

Lemma tac_rename Δ Δ' i j p P Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j P) Δ = Some Δ' 
303
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305 306 307 308
Proof.
  intros. rewrite envs_simple_replace_sound //.
  destruct p; simpl; by rewrite right_id wand_elim_r.
Qed.
Lemma tac_clear Δ Δ' i p P Q :
309
  envs_lookup_delete i Δ = Some (p,P,Δ')  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
Proof. intros. by rewrite envs_lookup_delete_sound // sep_elim_r. Qed.
311
Lemma tac_clear_spatial Δ Δ' Q :
312
  envs_clear_spatial Δ = Δ'  (Δ'  Q)  Δ  Q.
313
Proof. intros <- ?. by rewrite envs_clear_spatial_sound // sep_elim_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
314 315

(** * False *)
316
Lemma tac_ex_falso Δ Q : (Δ  False)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
317 318 319
Proof. by rewrite -(False_elim Q). Qed.

(** * Pure *)
320 321
Lemma tac_pure_intro Δ Q (φ : Prop) : FromPure Q φ  φ  Δ  Q.
Proof. intros ??. rewrite -(from_pure Q) //. apply True_intro. Qed.
322

Robbert Krebbers's avatar
Robbert Krebbers committed
323
Lemma tac_pure Δ Δ' i p P φ Q :
324
  envs_lookup_delete i Δ = Some (p, P, Δ')  IntoPure P φ 
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326 327
  (φ  Δ'  Q)  Δ  Q.
Proof.
  intros ?? HQ. rewrite envs_lookup_delete_sound' //; simpl.
328
  rewrite (into_pure P); by apply pure_elim_sep_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
329 330
Qed.

331
Lemma tac_pure_revert Δ φ Q : (Δ   φ  Q)  (φ  Δ  Q).
332
Proof. intros HΔ ?. by rewrite HΔ pure_equiv // left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
333 334

(** * Later *)
335 336 337 338 339
Class IntoLaterEnv (Γ1 Γ2 : env (uPred M)) :=
  into_later_env : env_Forall2 IntoLater Γ1 Γ2.
Class IntoLaterEnvs (Δ1 Δ2 : envs M) := {
  into_later_persistent: IntoLaterEnv (env_persistent Δ1) (env_persistent Δ2);
  into_later_spatial: IntoLaterEnv (env_spatial Δ1) (env_spatial Δ2)
340 341
}.

342
Global Instance into_later_env_nil : IntoLaterEnv Enil Enil.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Proof. constructor. Qed.
344 345 346
Global Instance into_later_env_snoc Γ1 Γ2 i P Q :
  IntoLaterEnv Γ1 Γ2  IntoLater P Q 
  IntoLaterEnv (Esnoc Γ1 i P) (Esnoc Γ2 i Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
347 348
Proof. by constructor. Qed.

349 350 351
Global Instance into_later_envs Γp1 Γp2 Γs1 Γs2 :
  IntoLaterEnv Γp1 Γp2  IntoLaterEnv Γs1 Γs2 
  IntoLaterEnvs (Envs Γp1 Γs1) (Envs Γp2 Γs2).
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Proof. by split. Qed.
353

354
Lemma into_later_env_sound Δ1 Δ2 : IntoLaterEnvs Δ1 Δ2  Δ1   Δ2.
Robbert Krebbers's avatar
Robbert Krebbers committed
355 356 357
Proof.
  intros [Hp Hs]; rewrite /of_envs /= !later_sep -always_later.
  repeat apply sep_mono; try apply always_mono.
358
  - rewrite -later_intro; apply pure_mono; destruct 1; constructor;
Robbert Krebbers's avatar
Robbert Krebbers committed
359 360 361 362 363 364
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - induction Hp; rewrite /= ?later_and; auto using and_mono, later_intro.
  - induction Hs; rewrite /= ?later_sep; auto using sep_mono, later_intro.
Qed.

Lemma tac_next Δ Δ' Q Q' :
365 366
  IntoLaterEnvs Δ Δ'  FromLater Q Q'  (Δ'  Q')  Δ  Q.
Proof. intros ?? HQ. by rewrite -(from_later Q) into_later_env_sound HQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368

Lemma tac_löb Δ Δ' i Q :
369
  env_spatial_is_nil Δ = true 
370
  envs_app true (Esnoc Enil i ( Q)%I) Δ = Some Δ' 
371
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
372
Proof.
373 374 375 376
  intros ?? HQ. rewrite -(always_elim Q) -(löb ( Q)) -always_later.
  apply impl_intro_l, (always_intro _ _).
  rewrite envs_app_sound //; simpl.
  by rewrite right_id always_and_sep_l' wand_elim_r HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
377 378
Qed.

379
Lemma tac_timeless Δ Δ' i p P P' Q :
380 381
  IsExceptLast Q 
  envs_lookup i Δ = Some (p, P)  IntoExceptLast P P' 
382
  envs_simple_replace i p (Esnoc Enil i P') Δ = Some Δ' 
383 384 385
  (Δ'  Q)  Δ  Q.
Proof.
  intros ???? HQ. rewrite envs_simple_replace_sound //; simpl.
386 387
  rewrite right_id HQ -{2}(is_except_last Q).
  by rewrite (into_except_last P) -except_last_always_if except_last_frame_r wand_elim_r.
388 389
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
390
(** * Always *)
391
Lemma tac_always_intro Δ Q : env_spatial_is_nil Δ = true  (Δ  Q)  Δ   Q.
392
Proof. intros. by apply (always_intro _ _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
393 394

Lemma tac_persistent Δ Δ' i p P P' Q :
395
  envs_lookup i Δ = Some (p, P)  IntoPersistentP P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
396
  envs_replace i p true (Esnoc Enil i P') Δ = Some Δ' 
397
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Proof.
399
  intros ??? <-. rewrite envs_replace_sound //; simpl.
400
  by rewrite right_id (into_persistentP P) always_if_always wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
401 402 403 404
Qed.

(** * Implication and wand *)
Lemma tac_impl_intro Δ Δ' i P Q :
405
  env_spatial_is_nil Δ = true 
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  envs_app false (Esnoc Enil i P) Δ = Some Δ' 
407
  (Δ'  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
408 409 410 411 412
Proof.
  intros ?? HQ. rewrite (persistentP Δ) envs_app_sound //; simpl.
  by rewrite right_id always_wand_impl always_elim HQ.
Qed.
Lemma tac_impl_intro_persistent Δ Δ' i P P' Q :
413
  IntoPersistentP P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
414
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
415
  (Δ'  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
416 417
Proof.
  intros ?? HQ. rewrite envs_app_sound //; simpl. apply impl_intro_l.
418
  by rewrite right_id {1}(into_persistentP P) always_and_sep_l wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
Qed.
420
Lemma tac_impl_intro_pure Δ P φ Q : IntoPure P φ  (φ  Δ  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
Proof.
422
  intros. by apply impl_intro_l; rewrite (into_pure P); apply pure_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
423 424 425
Qed.

Lemma tac_wand_intro Δ Δ' i P Q :
426
  envs_app false (Esnoc Enil i P) Δ = Some Δ'  (Δ'  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Proof.
428
  intros ? HQ. rewrite envs_app_sound //; simpl. by rewrite right_id HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430
Qed.
Lemma tac_wand_intro_persistent Δ Δ' i P P' Q :
431
  IntoPersistentP P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
432
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
433
  (Δ'  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
434 435 436 437
Proof.
  intros. rewrite envs_app_sound //; simpl.
  rewrite right_id. by apply wand_mono.
Qed.
438
Lemma tac_wand_intro_pure Δ P φ Q : IntoPure P φ  (φ  Δ  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
439
Proof.
440
  intros. by apply wand_intro_l; rewrite (into_pure P); apply pure_elim_sep_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
441 442 443 444 445 446
Qed.

(* This is pretty much [tac_specialize_assert] with [js:=[j]] and [tac_exact],
but it is doing some work to keep the order of hypotheses preserved. *)
Lemma tac_specialize Δ Δ' Δ'' i p j q P1 P2 R Q :
  envs_lookup_delete i Δ = Some (p, P1, Δ') 
447
  envs_lookup j (if p then Δ else Δ') = Some (q, R) 
448
  IntoWand R P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
449 450 451 452 453
  match p with
  | true  => envs_simple_replace j q (Esnoc Enil j P2) Δ
  | false => envs_replace j q false (Esnoc Enil j P2) Δ'
             (* remove [i] and make [j] spatial *)
  end = Some Δ'' 
454
  (Δ''  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
455 456 457
Proof.
  intros [? ->]%envs_lookup_delete_Some ??? <-. destruct p.
  - rewrite envs_lookup_persistent_sound // envs_simple_replace_sound //; simpl.
458
    rewrite assoc (into_wand R) (always_elim_if q) -always_if_sep wand_elim_r.
459
    by rewrite right_id wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
460 461
  - rewrite envs_lookup_sound //; simpl.
    rewrite envs_lookup_sound // (envs_replace_sound' _ Δ'') //; simpl.
462
    by rewrite right_id assoc (into_wand R) always_if_elim wand_elim_r wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
463 464
Qed.

465 466 467
Class IntoAssert (P : uPred M) (Q : uPred M) (R : uPred M) :=
  into_assert : R  (P - Q)  Q.
Global Arguments into_assert _ _ _ {_}.
468
Lemma into_assert_default P Q : IntoAssert P Q P.
469
Proof. by rewrite /IntoAssert wand_elim_r. Qed.
470
Global Instance to_assert_rvs P Q : IntoAssert P (|=r=> Q) (|=r=> P).
471
Proof. by rewrite /IntoAssert rvs_frame_r wand_elim_r rvs_trans. Qed.
472 473

Lemma tac_specialize_assert Δ Δ' Δ1 Δ2' j q lr js R P1 P2 P1' Q :
474
  envs_lookup_delete j Δ = Some (q, R, Δ') 
475
  IntoWand R P1 P2  IntoAssert P1 Q P1' 
Robbert Krebbers's avatar
Robbert Krebbers committed
476
  ('(Δ1,Δ2)  envs_split lr js Δ';
477
    Δ2'  envs_app false (Esnoc Enil j P2) Δ2;
Robbert Krebbers's avatar
Robbert Krebbers committed
478
    Some (Δ1,Δ2')) = Some (Δ1,Δ2')  (* does not preserve position of [j] *)
479
  (Δ1  P1')  (Δ2'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
480
Proof.
481
  intros [? ->]%envs_lookup_delete_Some ??? HP1 HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
482 483 484 485
  destruct (envs_split _ _ _) as [[? Δ2]|] eqn:?; simplify_eq/=;
    destruct (envs_app _ _ _) eqn:?; simplify_eq/=.
  rewrite envs_lookup_sound // envs_split_sound //.
  rewrite (envs_app_sound Δ2) //; simpl.
486 487
  rewrite right_id (into_wand R) HP1 assoc -(comm _ P1') -assoc.
  rewrite -(into_assert P1 Q); apply sep_mono_r, wand_intro_l.
488
  by rewrite always_if_elim assoc !wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
489 490
Qed.

491 492
Lemma tac_specialize_pure Δ Δ' j q R P1 P2 φ Q :
  envs_lookup j Δ = Some (q, R) 
493
  IntoWand R P1 P2  FromPure P1 φ 
494
  envs_simple_replace j q (Esnoc Enil j P2) Δ = Some Δ' 
495
  φ  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
Proof.
497
  intros. rewrite envs_simple_replace_sound //; simpl.
498
  by rewrite right_id (into_wand R) -(from_pure P1) // wand_True wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
499 500
Qed.

501 502
Lemma tac_specialize_persistent Δ Δ' Δ'' j q P1 P2 R Q :
  envs_lookup_delete j Δ = Some (q, R, Δ') 
503
  IntoWand R P1 P2 
504
  envs_simple_replace j q (Esnoc Enil j P2) Δ = Some Δ'' 
505 506
  (Δ'  P1)  (PersistentP P1  PersistentP P2) 
  (Δ''  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
507
Proof.
508 509 510 511 512
  intros [? ->]%envs_lookup_delete_Some ?? HP1 [?|?] <-.
  - rewrite envs_lookup_sound //.
    rewrite -(idemp uPred_and (envs_delete _ _ _)).
    rewrite {1}HP1 (persistentP P1) always_and_sep_l assoc.
    rewrite envs_simple_replace_sound' //; simpl.
513
    rewrite right_id (into_wand R) (always_elim_if q) -always_if_sep wand_elim_l.
514 515 516
    by rewrite wand_elim_r.
  - rewrite -(idemp uPred_and Δ) {1}envs_lookup_sound //; simpl; rewrite HP1.
    rewrite envs_simple_replace_sound //; simpl.
517
    rewrite (sep_elim_r _ (_ - _)) right_id (into_wand R) always_if_elim.
518
    by rewrite wand_elim_l always_and_sep_l -{1}(always_if_always q P2) wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
519 520 521 522
Qed.

Lemma tac_revert Δ Δ' i p P Q :
  envs_lookup_delete i Δ = Some (p,P,Δ') 
523
  (Δ'  if p then  P  Q else P - Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
524 525 526 527 528 529
Proof.
  intros ? HQ. rewrite envs_lookup_delete_sound //; simpl. destruct p.
  - by rewrite HQ -always_and_sep_l impl_elim_r.
  - by rewrite HQ wand_elim_r.
Qed.

530
Lemma tac_revert_spatial Δ Q :
531
  (envs_clear_spatial Δ  env_fold uPred_wand Q (env_spatial Δ))  Δ  Q.
532 533 534 535
Proof.
  intros HΔ. by rewrite envs_clear_spatial_sound HΔ env_fold_wand wand_elim_l.
Qed.

536
Lemma tac_assert Δ Δ1 Δ2 Δ2' lr js j P Q R :
537
  IntoAssert P Q R 
Robbert Krebbers's avatar
Robbert Krebbers committed
538
  envs_split lr js Δ = Some (Δ1,Δ2) 
539
  envs_app false (Esnoc Enil j P) Δ2 = Some Δ2' 
540
  (Δ1  R)  (Δ2'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
541
Proof.
542
  intros ??? HP HQ. rewrite envs_split_sound //.
543
  rewrite (envs_app_sound Δ2) //; simpl.
544
  by rewrite right_id HP HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546 547 548
Qed.

Lemma tac_assert_persistent Δ Δ' j P Q :
  envs_app true (Esnoc Enil j P) Δ = Some Δ' 
549
  (Δ  P)  PersistentP P  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
Proof.
551
  intros ? HP ??.
Robbert Krebbers's avatar
Robbert Krebbers committed
552 553 554 555
  rewrite -(idemp uPred_and Δ) {1}HP envs_app_sound //; simpl.
  by rewrite right_id {1}(persistentP P) always_and_sep_l wand_elim_r.
Qed.

556 557 558
Lemma tac_pose_proof Δ Δ' j P Q :
  (True  P) 
  envs_app true (Esnoc Enil j P) Δ = Some Δ' 
559
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
Proof.
561 562
  intros HP ? <-. rewrite envs_app_sound //; simpl.
  by rewrite right_id -HP always_pure wand_True.
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564
Qed.

565 566 567
Lemma tac_pose_proof_hyp Δ Δ' Δ'' i p j P Q :
  envs_lookup_delete i Δ = Some (p, P, Δ') 
  envs_app p (Esnoc Enil j P) (if p then Δ else Δ') = Some Δ'' 
568
  (Δ''  Q)  Δ  Q.
569 570 571 572 573 574 575 576
Proof.
  intros [? ->]%envs_lookup_delete_Some ? <-. destruct p.
  - rewrite envs_lookup_persistent_sound // envs_app_sound //; simpl.
    by rewrite right_id wand_elim_r.
  - rewrite envs_lookup_sound // envs_app_sound //; simpl.
    by rewrite right_id wand_elim_r.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
577
Lemma tac_apply Δ Δ' i p R P1 P2 :
578
  envs_lookup_delete i Δ = Some (p, R, Δ')  IntoWand R P1 P2 
579
  (Δ'  P1)  Δ  P2.
Robbert Krebbers's avatar
Robbert Krebbers committed
580 581
Proof.
  intros ?? HP1. rewrite envs_lookup_delete_sound' //.
582
  by rewrite (into_wand R) HP1 wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584 585 586 587
Qed.

(** * Rewriting *)
Lemma tac_rewrite Δ i p Pxy (lr : bool) Q :
  envs_lookup i Δ = Some (p, Pxy) 
Ralf Jung's avatar
Ralf Jung committed
588
   {A : cofeT} (x y : A) (Φ : A  uPred M),
589 590
    (Pxy  x  y) 
    (Q  Φ (if lr then y else x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
591
    ( n, Proper (dist n ==> dist n) Φ) 
592
    (Δ  Φ (if lr then x else y))  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
593 594 595 596 597 598 599 600
Proof.
  intros ? A x y ? HPxy -> ?; apply eq_rewrite; auto.
  rewrite {1}envs_lookup_sound' //; rewrite sep_elim_l HPxy.
  destruct lr; auto using eq_sym.
Qed.

Lemma tac_rewrite_in Δ i p Pxy j q P (lr : bool) Q :
  envs_lookup i Δ = Some (p, Pxy) 
601
  envs_lookup j Δ = Some (q, P) 
Robbert Krebbers's avatar
Robbert Krebbers committed
602
   {A : cofeT} Δ' x y (Φ : A  uPred M),
603 604
    (Pxy  x  y) 
    (P  Φ (if lr then y else x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
605 606
    ( n, Proper (dist n ==> dist n) Φ) 
    envs_simple_replace j q (Esnoc Enil j (Φ (if lr then x else y))) Δ = Some Δ' 
607
    (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
608 609 610 611
Proof.
  intros ?? A Δ' x y Φ HPxy HP ?? <-.
  rewrite -(idemp uPred_and Δ) {2}(envs_lookup_sound' _ i) //.
  rewrite sep_elim_l HPxy always_and_sep_r.
612 613 614 615 616
  rewrite (envs_simple_replace_sound _ _ j) //; simpl.
  rewrite HP right_id -assoc; apply wand_elim_r'. destruct lr.
  - apply (eq_rewrite x y (λ y, ?q Φ y - Δ')%I); eauto with I. solve_proper.
  - apply (eq_rewrite y x (λ y, ?q Φ y - Δ')%I); eauto using eq_sym with I.
    solve_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
617 618 619
Qed.

(** * Conjunction splitting *)
620 621
Lemma tac_and_split Δ P Q1 Q2 : FromAnd P Q1 Q2  (Δ  Q1)  (Δ  Q2)  Δ  P.
Proof. intros. rewrite -(from_and P). by apply and_intro. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
622 623 624

(** * Separating conjunction splitting *)
Lemma tac_sep_split Δ Δ1 Δ2 lr js P Q1 Q2 :
625
  FromSep P Q1 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
626
  envs_split lr js Δ = Some (Δ1,Δ2) 
627
  (Δ1  Q1)  (Δ2  Q2)  Δ  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
628
Proof.
629
  intros. rewrite envs_split_sound // -(from_sep P). by apply sep_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
630 631 632 633 634 635
Qed.

(** * Combining *)
Lemma tac_combine Δ1 Δ2 Δ3 Δ4 i1 p P1 i2 q P2 j P Q :
  envs_lookup_delete i1 Δ1 = Some (p,P1,Δ2) 
  envs_lookup_delete i2 (if p then Δ1 else Δ2) = Some (q,P2,Δ3) 
636
  FromSep P P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
637 638
  envs_app (p && q) (Esnoc Enil j P)
    (if q then (if p then Δ1 else Δ2) else Δ3) = Some Δ4 
639
  (Δ4  Q)  Δ1  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
640 641 642 643 644
Proof.
  intros [? ->]%envs_lookup_delete_Some [? ->]%envs_lookup_delete_Some ?? <-.
  destruct p.
  - rewrite envs_lookup_persistent_sound //. destruct q.
    + rewrite envs_lookup_persistent_sound // envs_app_sound //; simpl.
645
      by rewrite right_id assoc -always_sep (from_sep P) wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
646
    + rewrite envs_lookup_sound // envs_app_sound //; simpl.
647
      by rewrite right_id assoc always_elim (from_sep P) wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
648 649
  - rewrite envs_lookup_sound //; simpl. destruct q.
    + rewrite envs_lookup_persistent_sound // envs_app_sound //; simpl.
650
      by rewrite right_id assoc always_elim (from_sep P) wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
651
    + rewrite envs_lookup_sound // envs_app_sound //; simpl.
652
      by rewrite right_id assoc (from_sep P) wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
653 654 655
Qed.

(** * Conjunction/separating conjunction elimination *)
656 657
Lemma tac_and_destruct Δ Δ' i p j1 j2 P P1 P2 Q :
  envs_lookup i Δ = Some (p, P)  IntoAnd p P P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
658
  envs_simple_replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) Δ = Some Δ' 
659
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
660
Proof.
661
  intros. rewrite envs_simple_replace_sound //; simpl. rewrite (into_and p P).
662
  by destruct p; rewrite /= ?right_id (comm _ P1) ?always_and_sep wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
663 664
Qed.

665 666 667 668 669 670 671 672 673 674 675 676 677 678
(* Using this tactic, one can destruct a (non-separating) conjunction in the
spatial context as long as one of the conjuncts is thrown away. It corresponds
to the principle of "external choice" in linear logic. *)
Lemma tac_and_destruct_choice Δ Δ' i p (lr : bool) j P P1 P2 Q :
  envs_lookup i Δ = Some (p, P)  IntoAnd true P P1 P2 
  envs_simple_replace i p (Esnoc Enil j (if lr then P1 else P2)) Δ = Some Δ' 
  (Δ'  Q)  Δ  Q.
Proof.
  intros. rewrite envs_simple_replace_sound //; simpl.
  rewrite right_id (into_and true P). destruct lr.
  - by rewrite and_elim_l wand_elim_r.
  - by rewrite and_elim_r wand_elim_r.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
679
(** * Framing *)
680 681 682
Lemma tac_frame Δ Δ' i p R P Q :
  envs_lookup_delete i Δ = Some (p, R, Δ')  Frame R P Q 
  ((if p then Δ else Δ')  Q)  Δ  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
683
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
684
  intros [? ->]%envs_lookup_delete_Some ? HQ. destruct p.
685 686
  - by rewrite envs_lookup_persistent_sound // always_elim -(frame R P) HQ.
  - rewrite envs_lookup_sound //; simpl. by rewrite -(frame R P) HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
687 688 689
Qed.

(** * Disjunction *)
690 691 692 693
Lemma tac_or_l Δ P Q1 Q2 : FromOr P Q1 Q2  (Δ  Q1)  Δ  P.
Proof. intros. rewrite -(from_or P). by apply or_intro_l'. Qed.
Lemma tac_or_r Δ P Q1 Q2 : FromOr P Q1 Q2  (Δ  Q2)  Δ  P.
Proof. intros. rewrite -(from_or P). by apply or_intro_r'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
694 695

Lemma tac_or_destruct Δ Δ1 Δ2 i p j1 j2 P P1 P2 Q :
696
  envs_lookup i Δ = Some (p, P)  IntoOr P P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
697 698
  envs_simple_replace i p (Esnoc Enil j1 P1) Δ = Some Δ1 
  envs_simple_replace i p (Esnoc Enil j2 P2) Δ = Some Δ2 
699
  (Δ1  Q)  (Δ2  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
700
Proof.
701
  intros ???? HP1 HP2. rewrite envs_lookup_sound //.
702
  rewrite (into_or P) always_if_or sep_or_r; apply or_elim.
703 704 705 706
  - rewrite (envs_simple_replace_sound' _ Δ1) //.
    by rewrite /= right_id wand_elim_r.
  - rewrite (envs_simple_replace_sound' _ Δ2) //.
    by rewrite /= right_id wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
707 708 709
Qed.

(** * Forall *)
710
Lemma tac_forall_intro {A} Δ (Φ : A  uPred M) : ( a, Δ  Φ a)  Δ   a, Φ a.
Robbert Krebbers's avatar
Robbert Krebbers committed
711 712
Proof. apply forall_intro. Qed.

713
Class ForallSpecialize {As} (xs : hlist As)
714
  (P : uPred M) (Φ : himpl As (uPred M)) := forall_specialize : P  Φ xs.
715 716 717 718 719 720 721 722 723 724 725
Arguments forall_specialize {_} _ _ _ {_}.

Global Instance forall_specialize_nil P : ForallSpecialize hnil P P | 100.
Proof. done. Qed.
Global Instance forall_specialize_cons A As x xs Φ (Ψ : A  himpl As (uPred M)) :
  ( x, ForallSpecialize xs (Φ x) (Ψ x)) 
  ForallSpecialize (hcons x xs) ( x : A, Φ x) Ψ.
Proof. rewrite /ForallSpecialize /= => <-. by rewrite (forall_elim x). Qed.

Lemma tac_forall_specialize {As} Δ Δ' i p P (Φ : himpl As (uPred M)) Q xs :
  envs_lookup i Δ = Some (p, P)  ForallSpecialize xs P Φ 
726
  envs_simple_replace i p (Esnoc Enil i (Φ xs)) Δ = Some Δ' 
727
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed