derived.v 43.8 KB
Newer Older
1
From iris.base_logic Require Export primitive.
2
Set Default Proof Using "Type".
3
Import upred.uPred primitive.uPred.
4 5 6 7 8

Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Instance: Params (@uPred_iff) 1.
Infix "↔" := uPred_iff : uPred_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11 12 13 14 15 16 17 18
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, P at level 20,
   format "▷^ n  P") : uPred_scope.
Notation "▷? p P" := (uPred_laterN (Nat.b2n p) P)
  (at level 20, p at level 9, P at level 20,
   format "▷? p  P") : uPred_scope.

19 20 21 22 23
Definition uPred_always_if {M} (p : bool) (P : uPred M) : uPred M :=
  (if p then  P else P)%I.
Instance: Params (@uPred_always_if) 2.
Arguments uPred_always_if _ !_ _/.
Notation "□? p P" := (uPred_always_if p P)
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  (at level 20, p at level 9, P at level 20, format "□? p  P").
25

26 27
Definition uPred_except_0 {M} (P : uPred M) : uPred M :=  False  P.
Notation "◇ P" := (uPred_except_0 P)
28
  (at level 20, right associativity) : uPred_scope.
29 30
Instance: Params (@uPred_except_0) 1.
Typeclasses Opaque uPred_except_0.
31 32 33

Class TimelessP {M} (P : uPred M) := timelessP :  P   P.
Arguments timelessP {_} _ {_}.
34
Hint Mode TimelessP + ! : typeclass_instances.
35
Instance: Params (@TimelessP) 1.
36 37 38

Class PersistentP {M} (P : uPred M) := persistentP : P   P.
Arguments persistentP {_} _ {_}.
39
Hint Mode PersistentP + ! : typeclass_instances.
40
Instance: Params (@PersistentP) 1.
41

42
Module uPred.
43 44 45 46 47 48 49 50 51 52
Section derived.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)

(* Derived logical stuff *)
Lemma False_elim P : False  P.
53
Proof. by apply (pure_elim' False). Qed.
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
Lemma True_intro P : P  True.
Proof. by apply pure_intro. Qed.

Lemma and_elim_l' P Q R : (P  R)  P  Q  R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q  R)  P  Q  R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P  Q)  P  Q  R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P  R)  P  Q  R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : (P  Ψ a)  P   a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A  uPred M) : (P   a, Ψ a)   a, P  Ψ a.
Proof. move=> HP a. by rewrite HP forall_elim. Qed.

Hint Resolve pure_intro.
Hint Resolve or_elim or_intro_l' or_intro_r'.
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.

Lemma impl_intro_l P Q R : (Q  P  R)  P  Q  R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim_l P Q : (P  Q)  P  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : P  (P  Q)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : (Q  P  R)  P  Q  R.
Proof. intros; apply impl_elim with P; auto. Qed.
85
Lemma impl_entails P Q : (P  Q)%I  P  Q.
86
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
87 88
Lemma entails_impl P Q : (P  Q)  (P  Q)%I.
Proof. intro. apply impl_intro_l. auto. Qed.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

Lemma and_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply and_mono. Qed.

Lemma or_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply or_mono. Qed.

Lemma impl_mono P P' Q Q' : (Q  P)  (P'  Q')  (P  P')  Q  Q'.
Proof.
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
  apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof.
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.

Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
131 132 133
Global Instance impl_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
134 135 136
Global Instance forall_mono' A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
137 138 139
Global Instance forall_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
140
Global Instance exist_mono' A :
141 142 143 144
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
Proof. intros P1 P2; apply exist_mono. Qed.

Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
  intros P; apply (anti_symm ()).
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Qed.
181 182 183 184 185
Lemma False_impl P : (False  P)  True.
Proof.
  apply (anti_symm ()); [by auto|].
  apply impl_intro_l. rewrite left_absorb. auto.
Qed.
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

Lemma exists_impl_forall {A} P (Ψ : A  uPred M) :
  (( x : A, Ψ x)  P)   x : A, Ψ x  P.
Proof.
  apply equiv_spec; split.
  - apply forall_intro=>x. by rewrite -exist_intro.
  - apply impl_intro_r, impl_elim_r', exist_elim=>x.
    apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.

Lemma or_and_l P Q R : P  Q  R  (P  Q)  (P  R).
Proof.
  apply (anti_symm ()); first auto.
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P  Q  R  (P  R)  (Q  R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P  (Q  R)  P  Q  P  R.
Proof.
  apply (anti_symm ()); last auto.
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P  Q)  R  P  R  Q  R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
Proof.
  apply (anti_symm ()).
  - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
    by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A  uPred M) : ( a, Φ a)  P   a, Φ a  P.
Proof.
  rewrite -(comm _ P) and_exist_l. apply exist_proper=>a. by rewrite comm.
Qed.
222 223 224 225 226 227 228
Lemma or_exist {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof.
  apply (anti_symm ()).
  - apply exist_elim=> a. by rewrite -!(exist_intro a).
  - apply or_elim; apply exist_elim=> a; rewrite -(exist_intro a); auto.
Qed.
229

230
Lemma pure_elim φ Q R : (Q  ⌜φ⌝)  (φ  Q  R)  Q  R.
231 232 233 234
Proof.
  intros HQ HQR. rewrite -(idemp uPred_and Q) {1}HQ.
  apply impl_elim_l', pure_elim'=> ?. by apply entails_impl, HQR.
Qed.
Ralf Jung's avatar
Ralf Jung committed
235
Lemma pure_mono φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
236 237 238
Proof. intros; apply pure_elim with φ1; eauto. Qed.
Global Instance pure_mono' : Proper (impl ==> ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
239
Lemma pure_iff φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
240
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
241
Lemma pure_intro_l φ Q R : φ  (⌜φ⌝  Q  R)  Q  R.
242
Proof. intros ? <-; auto using pure_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
243
Lemma pure_intro_r φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
244
Proof. intros ? <-; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
245
Lemma pure_intro_impl φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
246
Proof. intros ? ->. eauto using pure_intro_l, impl_elim_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
247
Lemma pure_elim_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
248
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
249
Lemma pure_elim_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
250
Proof. intros; apply pure_elim with φ; eauto. Qed.
251

Ralf Jung's avatar
Ralf Jung committed
252
Lemma pure_True (φ : Prop) : φ  ⌜φ⌝  True.
253
Proof. intros; apply (anti_symm _); auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
254
Lemma pure_False (φ : Prop) : ¬φ  ⌜φ⌝  False.
255
Proof. intros; apply (anti_symm _); eauto using pure_elim. Qed.
256

Ralf Jung's avatar
Ralf Jung committed
257
Lemma pure_and φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
258 259 260 261 262
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[??]; auto.
  - eapply (pure_elim φ1); [auto|]=> ?. eapply (pure_elim φ2); auto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
263
Lemma pure_or φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
264 265 266 267 268
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[?|?]; auto.
  - apply or_elim; eapply pure_elim; eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
269
Lemma pure_impl φ1 φ2 : ⌜φ1  φ2  (⌜φ1  ⌜φ2).
270 271 272 273
Proof.
  apply (anti_symm _).
  - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver.
  - rewrite -pure_forall_2. apply forall_intro=> ?.
274
    by rewrite -(left_id True uPred_and (_→_))%I (pure_True φ1) // impl_elim_r.
275
Qed.
Ralf Jung's avatar
Ralf Jung committed
276
Lemma pure_forall {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
277 278 279 280
Proof.
  apply (anti_symm _); auto using pure_forall_2.
  apply forall_intro=> x. eauto using pure_mono.
Qed.
Ralf Jung's avatar
Ralf Jung committed
281
Lemma pure_exist {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
282 283 284 285 286 287
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[x ?]. rewrite -(exist_intro x); auto.
  - apply exist_elim=> x. eauto using pure_mono.
Qed.

288
Lemma internal_eq_refl' {A : ofeT} (a : A) P : P  a  a.
289 290
Proof. rewrite (True_intro P). apply internal_eq_refl. Qed.
Hint Resolve internal_eq_refl'.
291
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a  b  P  a  b.
292
Proof. by intros ->. Qed.
293
Lemma internal_eq_sym {A : ofeT} (a b : A) : a  b  b  a.
294
Proof. apply (internal_eq_rewrite a b (λ b, b  a)%I); auto. solve_proper. Qed.
295 296 297
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A  uPred M) P
  {HΨ : Contractive Ψ} : (P   (a  b))  (P  Ψ a)  P  Ψ b.
Proof.
298 299
  move: HΨ=> /contractiveI HΨ Heq ?.
  apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -HΨ.
300
Qed.
301

Ralf Jung's avatar
Ralf Jung committed
302
Lemma pure_impl_forall φ P : (⌜φ⌝  P)  ( _ : φ, P).
303 304
Proof.
  apply (anti_symm _).
305
  - apply forall_intro=> ?. by rewrite pure_True // left_id.
306 307
  - apply impl_intro_l, pure_elim_l=> Hφ. by rewrite (forall_elim Hφ).
Qed.
Ralf Jung's avatar
Ralf Jung committed
308
Lemma pure_alt φ : ⌜φ⌝   _ : φ, True.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
Proof.
  apply (anti_symm _).
  - eapply pure_elim; eauto=> H. rewrite -(exist_intro H); auto.
  - by apply exist_elim, pure_intro.
Qed.
Lemma and_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); first apply forall_intro=> -[]; auto.
  apply and_intro. by rewrite (forall_elim true). by rewrite (forall_elim false).
Qed.
Lemma or_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); last apply exist_elim=> -[]; auto.
  apply or_elim. by rewrite -(exist_intro true). by rewrite -(exist_intro false).
Qed.

325
Global Instance iff_ne : NonExpansive2 (@uPred_iff M).
326 327 328 329 330 331
Proof. unfold uPred_iff; solve_proper. Qed.
Global Instance iff_proper :
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.

Lemma iff_refl Q P : Q  P  P.
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
332
Lemma iff_equiv P Q : (P  Q)%I  (P  Q).
333 334
Proof.
  intros HPQ; apply (anti_symm ());
335
    apply impl_entails; rewrite /uPred_valid HPQ /uPred_iff; auto.
336
Qed.
337
Lemma equiv_iff P Q : (P  Q)  (P  Q)%I.
338
Proof. intros ->; apply iff_refl. Qed.
339
Lemma internal_eq_iff P Q : P  Q  P  Q.
340
Proof.
341 342
  apply (internal_eq_rewrite P Q (λ Q, P  Q))%I;
    first solve_proper; auto using iff_refl.
343 344 345 346
Qed.

(* Derived BI Stuff *)
Hint Resolve sep_mono.
347
Lemma sep_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
348
Proof. by intros; apply sep_mono. Qed.
349
Lemma sep_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
350 351 352 353 354 355
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
356
Lemma wand_mono P P' Q Q' : (Q  P)  (P'  Q')  (P - P')  Q - Q'.
357 358 359 360 361
Proof.
  intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
362 363 364
Global Instance wand_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
365 366 367 368 369 370 371 372 373 374 375 376

Global Instance sep_comm : Comm () (@uPred_sep M).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc () (@uPred_sep M).
Proof.
  intros P Q R; apply (anti_symm _); auto using sep_assoc'.
  by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto using True_sep_1, True_sep_2. Qed.
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Proof. by intros P; rewrite comm left_id. Qed.
377
Lemma sep_elim_l P Q : P  Q  P.
378
Proof. by rewrite (True_intro Q) right_id. Qed.
379 380 381
Lemma sep_elim_r P Q : P  Q  Q.
Proof. by rewrite (comm ())%I; apply sep_elim_l. Qed.
Lemma sep_elim_l' P Q R : (P  R)  P  Q  R.
382
Proof. intros ->; apply sep_elim_l. Qed.
383
Lemma sep_elim_r' P Q R : (Q  R)  P  Q  R.
384 385
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
386
Lemma sep_intro_True_l P Q R : P%I  (R  Q)  R  P  Q.
387
Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
388
Lemma sep_intro_True_r P Q R : (R  P)  Q%I  R  P  Q.
389
Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
390
Lemma sep_elim_True_l P Q R : P  (P  R  Q)  R  Q.
391
Proof. by intros HP; rewrite -HP left_id. Qed.
392
Lemma sep_elim_True_r P Q R : P  (R  P  Q)  R  Q.
393
Proof. by intros HP; rewrite -HP right_id. Qed.
394
Lemma wand_intro_l P Q R : (Q  P  R)  P  Q - R.
395
Proof. rewrite comm; apply wand_intro_r. Qed.
396
Lemma wand_elim_l P Q : (P - Q)  P  Q.
397
Proof. by apply wand_elim_l'. Qed.
398
Lemma wand_elim_r P Q : P  (P - Q)  Q.
399
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
400
Lemma wand_elim_r' P Q R : (Q  P - R)  P  Q  R.
401
Proof. intros ->; apply wand_elim_r. Qed.
402
Lemma wand_apply P Q R S : (P  Q - R)  (S  P  Q)  S  R.
Ralf Jung's avatar
Ralf Jung committed
403
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
404
Lemma wand_frame_l P Q R : (Q - R)  P  Q - P  R.
405
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
406
Lemma wand_frame_r P Q R : (Q - R)  Q  P - R  P.
407
Proof.
408
  apply wand_intro_l. rewrite ![(_  P)%I]comm -assoc.
409 410
  apply sep_mono_r, wand_elim_r.
Qed.
411
Lemma wand_diag P : (P - P)  True.
412
Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed.
413
Lemma wand_True P : (True - P)  P.
414 415
Proof.
  apply (anti_symm _); last by auto using wand_intro_l.
416
  eapply sep_elim_True_l; last by apply wand_elim_r. done.
417
Qed.
418
Lemma wand_entails P Q : (P - Q)%I  P  Q.
419 420 421
Proof.
  intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r.
Qed.
422 423
Lemma entails_wand P Q : (P  Q)  (P - Q)%I.
Proof. intro. apply wand_intro_l. auto. Qed.
424
Lemma wand_curry P Q R : (P - Q - R)  (P  Q - R).
425 426 427 428 429 430
Proof.
  apply (anti_symm _).
  - apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
  - do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.

431
Lemma sep_and P Q : (P  Q)  (P  Q).
432
Proof. auto. Qed.
433
Lemma impl_wand P Q : (P  Q)  P - Q.
434
Proof. apply wand_intro_r, impl_elim with P; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
435
Lemma pure_elim_sep_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
436
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
437
Lemma pure_elim_sep_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
438 439 440 441 442 443 444
Proof. intros; apply pure_elim with φ; eauto. Qed.

Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.

445
Lemma entails_equiv_and P Q : (P  Q  P)  (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
446
Proof. split. by intros ->; auto. intros; apply (anti_symm _); auto. Qed.
447
Lemma sep_and_l P Q R : P  (Q  R)  (P  Q)  (P  R).
448
Proof. auto. Qed.
449
Lemma sep_and_r P Q R : (P  Q)  R  (P  R)  (Q  R).
450
Proof. auto. Qed.
451
Lemma sep_or_l P Q R : P  (Q  R)  (P  Q)  (P  R).
452 453 454 455
Proof.
  apply (anti_symm ()); last by eauto 8.
  apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
456
Lemma sep_or_r P Q R : (P  Q)  R  (P  R)  (Q  R).
457
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
458
Lemma sep_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
459 460 461 462 463 464
Proof.
  intros; apply (anti_symm ()).
  - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
Qed.
465
Lemma sep_exist_r {A} (Φ: A  uPred M) Q: ( a, Φ a)  Q   a, Φ a  Q.
466
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
467
Lemma sep_forall_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
468
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
469
Lemma sep_forall_r {A} (Φ : A  uPred M) Q : ( a, Φ a)  Q   a, Φ a  Q.
470 471 472 473 474 475 476 477 478 479 480 481 482
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.

(* Always derived *)
Hint Resolve always_mono always_elim.
Global Instance always_mono' : Proper (() ==> ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.
Global Instance always_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.

Lemma always_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply always_idemp. Qed.

Ralf Jung's avatar
Ralf Jung committed
483
Lemma always_pure φ :  ⌜φ⌝  ⌜φ⌝.
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
Proof. apply (anti_symm _); auto using always_pure_2. Qed.
Lemma always_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma always_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_exist_1.
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
Lemma always_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt always_forall. by apply forall_proper=> -[]. Qed.
Lemma always_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt always_exist. by apply exist_proper=> -[]. Qed.
Lemma always_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -always_and.
  apply always_mono, impl_elim with P; auto.
Qed.
504
Lemma always_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
505 506
Proof.
  apply (anti_symm ()); auto using always_elim.
507
  apply (internal_eq_rewrite a b (λ b,  (a  b))%I); auto.
508
  { intros n; solve_proper. }
509
  rewrite -(internal_eq_refl a) always_pure; auto.
510 511
Qed.

512
Lemma always_and_sep P Q :  (P  Q)   (P  Q).
513
Proof. apply (anti_symm ()); auto using always_and_sep_1. Qed.
514
Lemma always_and_sep_l' P Q :  P  Q   P  Q.
515
Proof. apply (anti_symm ()); auto using always_and_sep_l_1. Qed.
516
Lemma always_and_sep_r' P Q : P   Q  P   Q.
517
Proof. by rewrite !(comm _ P) always_and_sep_l'. Qed.
518
Lemma always_sep P Q :  (P  Q)   P   Q.
519
Proof. by rewrite -always_and_sep -always_and_sep_l' always_and. Qed.
520
Lemma always_sep_dup' P :  P   P   P.
521 522
Proof. by rewrite -always_sep -always_and_sep (idemp _). Qed.

523
Lemma always_wand P Q :  (P - Q)   P -  Q.
524
Proof. by apply wand_intro_r; rewrite -always_sep wand_elim_l. Qed.
525
Lemma always_wand_impl P Q :  (P - Q)   (P  Q).
526 527 528 529 530
Proof.
  apply (anti_symm ()); [|by rewrite -impl_wand].
  apply always_intro', impl_intro_r.
  by rewrite always_and_sep_l' always_elim wand_elim_l.
Qed.
531
Lemma always_entails_l' P Q : (P   Q)  P   Q  P.
532
Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
533
Lemma always_entails_r' P Q : (P   Q)  P  P   Q.
534 535
Proof. intros; rewrite -always_and_sep_r'; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
536 537 538 539
Lemma always_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite always_later IH. Qed.


540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
(* Later derived *)
Lemma later_proper P Q : (P  Q)   P   Q.
Proof. by intros ->. Qed.
Hint Resolve later_mono later_proper.
Global Instance later_mono' : Proper (() ==> ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.
Global Instance later_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.

Lemma later_intro P : P   P.
Proof.
  rewrite -(and_elim_l ( P) P) -(löb ( P  P)).
  apply impl_intro_l. by rewrite {1}(and_elim_r ( P)).
Qed.

Lemma later_True :  True  True.
Proof. apply (anti_symm ()); auto using later_intro. Qed.
Lemma later_forall {A} (Φ : A  uPred M) : (  a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); auto using later_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma later_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply: anti_symm; [|apply exist_elim; eauto using exist_intro].
  rewrite later_exist_false. apply or_elim; last done.
  rewrite -(exist_intro inhabitant); auto.
Qed.
Lemma later_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt later_forall. by apply forall_proper=> -[]. Qed.
Lemma later_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt later_exist. by apply exist_proper=> -[]. Qed.
Lemma later_impl P Q :  (P  Q)   P   Q.
Proof. apply impl_intro_l; rewrite -later_and; eauto using impl_elim. Qed.
576
Lemma later_wand P Q :  (P - Q)   P -  Q.
577 578 579 580 581
Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.


Robbert Krebbers's avatar
Robbert Krebbers committed
582
(* Iterated later modality *)
583
Global Instance laterN_ne m : NonExpansive (@uPred_laterN M m).
Robbert Krebbers's avatar
Robbert Krebbers committed
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
  Proper (() ==> ()) (@uPred_laterN M m) := ne_proper _.

Lemma laterN_0 P : ^0 P  P.
Proof. done. Qed.
Lemma later_laterN n P : ^(S n) P   ^n P.
Proof. done. Qed.
Lemma laterN_later n P : ^(S n) P  ^n  P.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_plus n1 n2 P : ^(n1 + n2) P  ^n1 ^n2 P.
Proof. induction n1; simpl; auto. Qed.
Lemma laterN_le n1 n2 P : n1  n2  ^n1 P  ^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_mono n P Q : (P  Q)  ^n P  ^n Q.
Proof. induction n; simpl; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
  Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.

Lemma laterN_intro n P : P  ^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_True n : ^n True  True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_forall {A} n (Φ : A  uPred M) : (^n  a, Φ a)  ( a, ^n Φ a).
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall; auto. Qed.
Lemma laterN_exist `{Inhabited A} n (Φ : A  uPred M) :
  (^n  a, Φ a)   a, ^n Φ a.
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist; auto. Qed.
Lemma laterN_and n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_and; auto. Qed.
Lemma laterN_or n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_or; auto. Qed.
Lemma laterN_impl n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof.
  apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_sep n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep; auto. Qed.
Lemma laterN_wand n P Q : ^n (P - Q)  ^n P - ^n Q.
Proof.
  apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.

634
(* Conditional always *)
635
Global Instance always_if_ne p : NonExpansive (@uPred_always_if M p).
636 637 638 639 640 641 642 643 644 645 646
Proof. solve_proper. Qed.
Global Instance always_if_proper p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_mono p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.

Lemma always_if_elim p P : ?p P  P.
Proof. destruct p; simpl; auto using always_elim. Qed.
Lemma always_elim_if p P :  P  ?p P.
Proof. destruct p; simpl; auto using always_elim. Qed.

Ralf Jung's avatar
Ralf Jung committed
647
Lemma always_if_pure p φ : ?p ⌜φ⌝  ⌜φ⌝.
648 649 650 651 652 653 654
Proof. destruct p; simpl; auto using always_pure. Qed.
Lemma always_if_and p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_and. Qed.
Lemma always_if_or p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_or. Qed.
Lemma always_if_exist {A} p (Ψ : A  uPred M) : (?p  a, Ψ a)   a, ?p Ψ a.
Proof. destruct p; simpl; auto using always_exist. Qed.
655
Lemma always_if_sep p P Q : ?p (P  Q)  ?p P  ?p Q.
656 657 658
Proof. destruct p; simpl; auto using always_sep. Qed.
Lemma always_if_later p P : ?p  P   ?p P.
Proof. destruct p; simpl; auto using always_later. Qed.
659 660
Lemma always_if_laterN p n P : ?p ^n P  ^n ?p P.
Proof. destruct p; simpl; auto using always_laterN. Qed.
661 662

(* True now *)
663
Global Instance except_0_ne : NonExpansive (@uPred_except_0 M).
664
Proof. solve_proper. Qed.
665
Global Instance except_0_proper : Proper (() ==> ()) (@uPred_except_0 M).
666
Proof. solve_proper. Qed.
667
Global Instance except_0_mono' : Proper (() ==> ()) (@uPred_except_0 M).
668
Proof. solve_proper. Qed.
669 670
Global Instance except_0_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_except_0 M).
671 672
Proof. solve_proper. Qed.

673 674 675
Lemma except_0_intro P : P   P.
Proof. rewrite /uPred_except_0; auto. Qed.
Lemma except_0_mono P Q : (P  Q)   P   Q.
676
Proof. by intros ->. Qed.
677 678 679 680 681 682 683 684 685
Lemma except_0_idemp P :   P   P.
Proof. rewrite /uPred_except_0; auto. Qed.

Lemma except_0_True :  True  True.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_or P Q :  (P  Q)   P   Q.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_and P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_except_0 or_and_l. Qed.
686
Lemma except_0_sep P Q :  (P  Q)   P   Q.
687 688
Proof.
  rewrite /uPred_except_0. apply (anti_symm _).
689 690 691 692
  - apply or_elim; last by auto.
    by rewrite -!or_intro_l -always_pure -always_later -always_sep_dup'.
  - rewrite sep_or_r sep_elim_l sep_or_l; auto.
Qed.
693
Lemma except_0_forall {A} (Φ : A  uPred M) :  ( a, Φ a)   a,  Φ a.
694
Proof. apply forall_intro=> a. by rewrite (forall_elim a). Qed.
695
Lemma except_0_exist_2 {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
696
Proof. apply exist_elim=> a. by rewrite (exist_intro a). Qed.
697 698 699 700 701 702 703
Lemma except_0_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); [|by apply except_0_exist_2]. apply or_elim.
  - rewrite -(exist_intro inhabitant). by apply or_intro_l.
  - apply exist_mono=> a. apply except_0_intro.
Qed.
704 705 706 707 708 709
Lemma except_0_later P :   P   P.
Proof. by rewrite /uPred_except_0 -later_or False_or. Qed.
Lemma except_0_always P :   P    P.
Proof. by rewrite /uPred_except_0 always_or always_later always_pure. Qed.
Lemma except_0_always_if p P :  ?p P  ?p  P.
Proof. destruct p; simpl; auto using except_0_always. Qed.
710
Lemma except_0_frame_l P Q : P   Q   (P  Q).
711
Proof. by rewrite {1}(except_0_intro P) except_0_sep. Qed.
712
Lemma except_0_frame_r P Q :  P  Q   (P  Q).
713
Proof. by rewrite {1}(except_0_intro Q) except_0_sep. Qed.
714 715 716 717 718 719 720 721 722 723 724 725

(* Own and valid derived *)
Lemma always_ownM (a : M) : Persistent a   uPred_ownM a  uPred_ownM a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  by rewrite {1}always_ownM_core persistent_core.
Qed.
Lemma ownM_invalid (a : M) : ¬ {0} a  uPred_ownM a  False.
Proof. by intros; rewrite ownM_valid cmra_valid_elim. Qed.
Global Instance ownM_mono : Proper (flip () ==> ()) (@uPred_ownM M).
Proof. intros a b [b' ->]. rewrite ownM_op. eauto. Qed.
Lemma ownM_empty' : uPred_ownM   True.
726
Proof. apply (anti_symm _); first by auto. apply ownM_empty. Qed.
727 728 729 730 731 732 733 734 735 736 737
Lemma always_cmra_valid {A : cmraT} (a : A) :   a   a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  apply:always_cmra_valid_1.
Qed.

(** * Derived rules *)
Global Instance bupd_mono' : Proper (() ==> ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
Global Instance bupd_flip_mono' : Proper (flip () ==> flip ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
738
Lemma bupd_frame_l R Q : (R  |==> Q) == R  Q.
739
Proof. rewrite !(comm _ R); apply bupd_frame_r. Qed.
740
Lemma bupd_wand_l P Q : (P - Q)  (|==> P) == Q.
741
Proof. by rewrite bupd_frame_l wand_elim_l. Qed.
742
Lemma bupd_wand_r P Q : (|==> P)  (P - Q) == Q.
743
Proof. by rewrite bupd_frame_r wand_elim_r. Qed.
744
Lemma bupd_sep P Q : (|==> P)  (|==> Q) == P  Q.
745 746 747 748 749 750
Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed.
Lemma bupd_ownM_update x y : x ~~> y  uPred_ownM x  |==> uPred_ownM y.
Proof.
  intros; rewrite (bupd_ownM_updateP _ (y =)); last by apply cmra_update_updateP.
  by apply bupd_mono, exist_elim=> y'; apply pure_elim_l=> ->.
Qed.
751
Lemma except_0_bupd P :  (|==> P)  (|==>  P).
752
Proof.
753
  rewrite /uPred_except_0. apply or_elim; auto using bupd_mono.
754 755 756 757
  by rewrite -bupd_intro -or_intro_l.
Qed.

(* Timeless instances *)
758 759
Global Instance TimelessP_proper : Proper (() ==> iff) (@TimelessP M).
Proof. solve_proper. Qed.
Ralf Jung's avatar
Ralf Jung committed
760
Global Instance pure_timeless φ : TimelessP (⌜φ⌝ : uPred M)%I.
761 762 763 764 765 766 767
Proof.
  rewrite /TimelessP pure_alt later_exist_false. by setoid_rewrite later_True.
Qed.
Global Instance valid_timeless {A : cmraT} `{CMRADiscrete A} (a : A) :
  TimelessP ( a : uPred M)%I.
Proof. rewrite /TimelessP !discrete_valid. apply (timelessP _). Qed.
Global Instance and_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
768
Proof. intros; rewrite /TimelessP except_0_and later_and; auto. Qed.
769
Global Instance or_timeless P Q : TimelessP P  TimelessP Q  TimelessP (P  Q).
770
Proof. intros; rewrite /TimelessP except_0_or later_or; auto. Qed.
771 772 773 774 775
Global Instance impl_timeless P Q : TimelessP Q  TimelessP (P  Q).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, impl_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
776
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
777 778
  by rewrite assoc (comm _ _ P) -assoc !impl_elim_r.
Qed.
779
Global Instance sep_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
780
Proof. intros; rewrite /TimelessP except_0_sep later_sep; auto. Qed.
781
Global Instance wand_timeless P Q : TimelessP Q  TimelessP (P - Q).
782 783 784 785
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, wand_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
786
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.