logic.v 19.2 KB
Newer Older
1
Require Import iris.cmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
4
5
Local Hint Extern 1 (_  _) => etransitivity; [eassumption|].
Local Hint Extern 1 (_  _) => etransitivity; [|eassumption].
Local Hint Extern 10 (_  _) => omega.

Robbert Krebbers's avatar
Robbert Krebbers committed
6
7
8
9
10
Structure uPred (M : cmraT) : Type := IProp {
  uPred_holds :> nat  M -> Prop;
  uPred_ne x1 x2 n : uPred_holds n x1  x1 ={n}= x2  uPred_holds n x2;
  uPred_weaken x1 x2 n1 n2 :
    x1  x2  n2  n1  validN n2 x2  uPred_holds n1 x1  uPred_holds n2 x2
Robbert Krebbers's avatar
Robbert Krebbers committed
11
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
Add Printing Constructor uPred.
Instance: Params (@uPred_holds) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15
Instance uPred_equiv (M : cmraT) : Equiv (uPred M) := λ P Q,  x n,
Robbert Krebbers's avatar
Robbert Krebbers committed
16
  validN n x  P n x  Q n x.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
Instance uPred_dist (M : cmraT) : Dist (uPred M) := λ n P Q,  x n',
Robbert Krebbers's avatar
Robbert Krebbers committed
18
  n' < n  validN n' x  P n' x  Q n' x.
Robbert Krebbers's avatar
Robbert Krebbers committed
19
20
21
Program Instance uPred_compl (M : cmraT) : Compl (uPred M) := λ c,
  {| uPred_holds n x := c (S n) n x |}.
Next Obligation. by intros M c x y n ??; simpl in *; apply uPred_ne with x. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
Next Obligation.
23
  intros M c x1 x2 n1 n2 ????; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  apply (chain_cauchy c (S n2) (S n1)); eauto using uPred_weaken, cmra_valid_le.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Instance uPred_cofe (M : cmraT) : Cofe (uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
27
28
29
30
31
32
33
34
35
36
37
38
Proof.
  split.
  * intros P Q; split; [by intros HPQ n x i ??; apply HPQ|].
    intros HPQ x n ?; apply HPQ with (S n); auto.
  * intros n; split.
    + by intros P x i.
    + by intros P Q HPQ x i ??; symmetry; apply HPQ.
    + by intros P Q Q' HP HQ x i ??; transitivity (Q i x); [apply HP|apply HQ].
  * intros n P Q HPQ x i ??; apply HPQ; auto.
  * intros P Q x i ??; lia.
  * intros c n x i ??; apply (chain_cauchy c (S i) n); auto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
39
40
41
42
43
Instance uPred_holds_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n).
Proof. intros x1 x2 Hx; split; eauto using uPred_ne. Qed.
Instance uPred_holds_proper {M} (P : uPred M) n : Proper (() ==> iff) (P n).
Proof. by intros x1 x2 Hx; apply uPred_holds_ne, equiv_dist. Qed.
Definition uPredC (M : cmraT) : cofeT := CofeT (uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45

(** functor *)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
Program Definition uPred_map {M1 M2 : cmraT} (f : M2  M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  `{! n, Proper (dist n ==> dist n) f, !CMRAPreserving f}
Robbert Krebbers's avatar
Robbert Krebbers committed
48
  (P : uPred M1) : uPred M2 := {| uPred_holds n x := P n (f x) |}.
49
Next Obligation. by intros M1 M2 f ?? P y1 y2 n ? Hy; simpl; rewrite <-Hy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
50
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
51
  by intros M1 M2 f ?? P y1 y2 n i ???; simpl; apply uPred_weaken; auto;
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
    apply validN_preserving || apply included_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
Instance uPred_map_ne {M1 M2 : cmraT} (f : M2  M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
55
  `{! n, Proper (dist n ==> dist n) f, !CMRAPreserving f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  Proper (dist n ==> dist n) (uPred_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
57
58
59
Proof.
  by intros n x1 x2 Hx y n'; split; apply Hx; try apply validN_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
61
Definition uPredC_map {M1 M2 : cmraT} (f : M2 -n> M1) `{!CMRAPreserving f} :
  uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1  uPredC M2).
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63

(** logical entailement *)
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Instance uPred_entails {M} : SubsetEq (uPred M) := λ P Q,  x n,
Robbert Krebbers's avatar
Robbert Krebbers committed
65
66
67
  validN n x  P n x  Q n x.

(** logical connectives *)
Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
Program Definition uPred_const {M} (P : Prop) : uPred M :=
  {| uPred_holds n x := P |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
71
Solve Obligations with done.

Robbert Krebbers's avatar
Robbert Krebbers committed
72
73
74
75
76
77
78
79
Program Definition uPred_and {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Program Definition uPred_or {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Program Definition uPred_impl {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x' n',
Robbert Krebbers's avatar
Robbert Krebbers committed
80
81
       x  x'  n'  n  validN n' x'  P n' x'  Q n' x' |}.
Next Obligation.
82
  intros M P Q x1' x1 n1 HPQ Hx1 x2 n2 ????.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
85
  destruct (cmra_included_dist_l x1 x2 x1' n1) as (x2'&?&Hx2); auto.
  assert (x2' ={n2}= x2) as Hx2' by (by apply dist_le with n1).
  assert (validN n2 x2') by (by rewrite Hx2'); rewrite <-Hx2'.
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  by apply HPQ, uPred_weaken with x2' n2, uPred_ne with x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
Qed.
Next Obligation. naive_solver eauto 2 with lia. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
90
91
92
93
94
95
Program Definition uPred_forall {M A} (P : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, P a n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Program Definition uPred_exist {M A} (P : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, P a n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Robbert Krebbers's avatar
Robbert Krebbers committed
96

Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
Program Definition uPred_eq {M} {A : cofeT} (a1 a2 : A) : uPred M :=
  {| uPred_holds n x := a1 ={n}= a2 |}.
99
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
100

Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
Program Definition uPred_sep {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x1 x2, x ={n}= x1  x2  P n x1  Q n x2 |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Next Obligation.
104
  by intros M P Q x y n (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite <-Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
105
106
Qed.
Next Obligation.
107
  intros M P Q x y n1 n2 Hxy ?? (x1&x2&Hx&?&?).
Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
110
111
  assert ( x2', y ={n2}= x1  x2'  x2  x2') as (x2'&Hy&?).
  { rewrite ra_included_spec in Hxy; destruct Hxy as [z Hy].
    exists (x2  z); split; eauto using ra_included_l.
    apply dist_le with n1; auto. by rewrite (associative op), <-Hx, Hy. }
112
  exists x1, x2'; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
  * apply uPred_weaken with x1 n1; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
    by apply cmra_valid_op_l with x2'; rewrite <-Hy.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
  * apply uPred_weaken with x2 n1; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
118
    by apply cmra_valid_op_r with x1; rewrite <-Hy.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
Program Definition uPred_wand {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x' n',
Robbert Krebbers's avatar
Robbert Krebbers committed
121
122
       n'  n  validN n' (x  x')  P n' x'  Q n' (x  x') |}.
Next Obligation.
123
  intros M P Q x1 x2 n1 HPQ Hx x3 n2 ???; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
126
127
  rewrite <-(dist_le _ _ _ _ Hx) by done; apply HPQ; auto.
  by rewrite (dist_le _ _ _ n2 Hx).
Qed.
Next Obligation.
128
  intros M P Q x1 x2 n1 n2 ??? HPQ x3 n3 ???; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
129
  apply uPred_weaken with (x1  x3) n3; auto using ra_preserving_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
132
133
  apply HPQ; auto.
  apply cmra_valid_included with (x2  x3); auto using ra_preserving_r.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
136
Program Definition uPred_later {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation. intros M P ?? [|n]; eauto using uPred_ne,(dist_le (A:=M)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
Next Obligation.
138
  intros M P x1 x2 [|n1] [|n2] ????; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
  apply uPred_weaken with x1 n1; eauto using cmra_valid_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
Program Definition uPred_always {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n (unit x) |}.
143
Next Obligation. by intros M P x1 x2 n ? Hx; simpl in *; rewrite <-Hx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
  intros M P x1 x2 n1 n2 ????; eapply uPred_weaken with (unit x1) n1;
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
148
    auto using ra_unit_preserving, cmra_unit_valid.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
Program Definition uPred_own {M : cmraT} (a : M) : uPred M :=
  {| uPred_holds n x :=  a', x ={n}= a  a' |}.
151
Next Obligation. by intros M a x1 x2 n [a' Hx] ?; exists a'; rewrite <-Hx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Next Obligation.
153
  intros M a x1 x n1 n2; rewrite ra_included_spec; intros [x2 Hx] ?? [a' Hx1].
Robbert Krebbers's avatar
Robbert Krebbers committed
154
155
  exists (a'  x2). by rewrite (associative op), <-(dist_le _ _ _ _ Hx1), Hx.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
Program Definition uPred_valid {M : cmraT} (a : M) : uPred M :=
  {| uPred_holds n x := validN n a |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
Solve Obligations with naive_solver eauto 2 using cmra_valid_le.

Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
Definition uPred_fixpoint {M} (P : uPred M  uPred M)
  `{!Contractive P} : uPred M := fixpoint P (uPred_const True).
Robbert Krebbers's avatar
Robbert Krebbers committed
162

Robbert Krebbers's avatar
Robbert Krebbers committed
163
164
165
Delimit Scope uPred_scope with I.
Bind Scope uPred_scope with uPred.
Arguments uPred_holds {_} _%I _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
166

Robbert Krebbers's avatar
Robbert Krebbers committed
167
168
169
170
171
172
173
Notation "'False'" := (uPred_const False) : uPred_scope.
Notation "'True'" := (uPred_const True) : uPred_scope.
Infix "∧" := uPred_and : uPred_scope.
Infix "∨" := uPred_or : uPred_scope.
Infix "→" := uPred_impl : uPred_scope.
Infix "★" := uPred_sep (at level 80, right associativity) : uPred_scope.
Infix "-★" := uPred_wand (at level 90) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
Notation "∀ x .. y , P" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
Notation "∃ x .. y , P" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
179
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)) : uPred_scope.
Notation "▷ P" := (uPred_later P) (at level 20) : uPred_scope.
Notation "□ P" := (uPred_always P) (at level 20) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181

Section logic.
182
Context {M : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
183
Implicit Types P Q : uPred M.
Robbert Krebbers's avatar
Robbert Krebbers committed
184

Robbert Krebbers's avatar
Robbert Krebbers committed
185
Global Instance uPred_preorder : PreOrder (() : relation (uPred M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
186
Proof. split. by intros P x i. by intros P Q Q' HP HQ x i ??; apply HQ, HP. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
Lemma uPred_equiv_spec P Q : P  Q  P  Q  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
189
190
191
192
193
194
Proof.
  split.
  * intros HPQ; split; intros x i; apply HPQ.
  * by intros [HPQ HQP]; intros x i ?; split; [apply HPQ|apply HQP].
Qed.

(** Non-expansiveness *)
Robbert Krebbers's avatar
Robbert Krebbers committed
195
Global Instance uPred_const_proper : Proper (iff ==> ()) (@uPred_const M).
Robbert Krebbers's avatar
Robbert Krebbers committed
196
Proof. intros P Q HPQ ???; apply HPQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
198
Global Instance uPred_and_ne n :
  Proper (dist n ==> dist n ==> dist n) (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
199
200
201
Proof.
  intros P P' HP Q Q' HQ; split; intros [??]; split; by apply HP || by apply HQ.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
Global Instance uPred_and_proper :
  Proper (() ==> () ==> ()) (@uPred_and M) := ne_proper_2 _.
Global Instance uPred_or_ne n :
  Proper (dist n ==> dist n ==> dist n) (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
206
207
208
209
Proof.
  intros P P' HP Q Q' HQ; split; intros [?|?];
    first [by left; apply HP | by right; apply HQ].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
211
212
213
Global Instance uPred_or_proper :
  Proper (() ==> () ==> ()) (@uPred_or M) := ne_proper_2 _.
Global Instance uPred_impl_ne n :
  Proper (dist n ==> dist n ==> dist n) (@uPred_impl M).
Robbert Krebbers's avatar
Robbert Krebbers committed
214
215
216
Proof.
  intros P P' HP Q Q' HQ; split; intros HPQ x' n'' ????; apply HQ,HPQ,HP; auto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
217
218
219
220
Global Instance uPred_impl_proper :
  Proper (() ==> () ==> ()) (@uPred_impl M) := ne_proper_2 _.
Global Instance uPred_sep_ne n :
  Proper (dist n ==> dist n ==> dist n) (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
Proof.
  intros P P' HP Q Q' HQ x n' ? Hx'; split; intros (x1&x2&Hx&?&?);
223
    exists x1, x2; rewrite  Hx in Hx'; split_ands; try apply HP; try apply HQ;
Robbert Krebbers's avatar
Robbert Krebbers committed
224
225
    eauto using cmra_valid_op_l, cmra_valid_op_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
Global Instance uPred_sep_proper :
  Proper (() ==> () ==> ()) (@uPred_sep M) := ne_proper_2 _.
Global Instance uPred_wand_ne n :
  Proper (dist n ==> dist n ==> dist n) (@uPred_wand M).
Robbert Krebbers's avatar
Robbert Krebbers committed
230
231
232
233
Proof.
  intros P P' HP Q Q' HQ x n' ??; split; intros HPQ x' n'' ???;
    apply HQ, HPQ, HP; eauto using cmra_valid_op_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236
237
Global Instance uPred_wand_proper :
  Proper (() ==> () ==> ()) (@uPred_wand M) := ne_proper_2 _.
Global Instance uPred_eq_ne {A : cofeT} n :
  Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239
240
241
242
Proof.
  intros x x' Hx y y' Hy z n'; split; intros; simpl in *.
  * by rewrite <-(dist_le _ _ _ _ Hx), <-(dist_le _ _ _ _ Hy) by auto.
  * by rewrite (dist_le _ _ _ _ Hx), (dist_le _ _ _ _ Hy) by auto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
245
246
Global Instance uPred_eq_proper {A : cofeT} :
  Proper (() ==> () ==> ()) (@uPred_eq M A) := ne_proper_2 _.
Global Instance uPred_forall_ne {A : cofeT} :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Proof. by intros n P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
248
249
Global Instance uPred_forall_proper {A : cofeT} :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
250
Proof. by intros P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
Global Instance uPred_exists_ne {A : cofeT} :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
253
254
255
Proof.
  by intros n P1 P2 HP12 x n'; split; intros [a HP]; exists a; apply HP12.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
Global Instance uPred_exist_proper {A : cofeT} :
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
258
259
260
Proof.
  by intros P1 P2 HP12 x n'; split; intros [a HP]; exists a; apply HP12.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
261
Global Instance uPred_later_contractive : Contractive (@uPred_later M).
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
264
265
Proof.
  intros n P Q HPQ x [|n'] ??; simpl; [done|].
  apply HPQ; eauto using cmra_valid_S.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
267
268
Global Instance uPred_later_proper :
  Proper (() ==> ()) (@uPred_later M) := ne_proper _.
Global Instance uPred_always_ne n: Proper (dist n ==> dist n) (@uPred_always M).
Robbert Krebbers's avatar
Robbert Krebbers committed
269
Proof. intros P1 P2 HP x n'; split; apply HP; eauto using cmra_unit_valid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272
Global Instance uPred_always_proper :
  Proper (() ==> ()) (@uPred_always M) := ne_proper _.
Global Instance uPred_own_ne n : Proper (dist n ==> dist n) (@uPred_own M).
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
275
276
Proof.
  by intros a1 a2 Ha x n'; split; intros [a' ?]; exists a'; simpl; first
    [rewrite <-(dist_le _ _ _ _ Ha) by lia|rewrite (dist_le _ _ _ _ Ha) by lia].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
277
278
Global Instance uPred_own_proper :
  Proper (() ==> ()) (@uPred_own M) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
280

(** Introduction and elimination rules *)
Robbert Krebbers's avatar
Robbert Krebbers committed
281
Lemma uPred_True_intro P : P  True%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
282
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
283
Lemma uPred_False_elim P : False%I  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
284
Proof. by intros x n ?. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
285
Lemma uPred_and_elim_l P Q : (P  Q)%I  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
286
Proof. by intros x n ? [??]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
287
Lemma uPred_and_elim_r P Q : (P  Q)%I  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
288
Proof. by intros x n ? [??]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
289
Lemma uPred_and_intro R P Q : R  P  R  Q  R  (P  Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
Proof. intros HP HQ x n ??; split. by apply HP. by apply HQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
Lemma uPred_or_intro_l P Q : P  (P  Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
Proof. by left. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
Lemma uPred_or_intro_r P Q : Q  (P  Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
294
Proof. by right. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
Lemma uPred_or_elim R P Q : P  R  Q  R  (P  Q)%I  R.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
Proof. intros HP HQ x n ? [?|?]. by apply HP. by apply HQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Lemma uPred_impl_intro P Q R : (R  P)%I  Q  R  (P  Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
  intros HQ x n ?? x' n' ????; apply HQ; naive_solver eauto using uPred_weaken.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Lemma uPred_impl_elim P Q : ((P  Q)  P)%I  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Proof. by intros x n ? [HQ HP]; apply HQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
Lemma uPred_forall_intro P `(Q: A  uPred M): ( a, P  Q a)  P  ( a, Q a)%I.
304
Proof. by intros HPQ x n ?? a; apply HPQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Lemma uPred_forall_elim `(P : A  uPred M) a : ( a, P a)%I  P a.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Proof. intros x n ? HP; apply HP. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Lemma uPred_exist_intro `(P : A  uPred M) a : P a  ( a, P a)%I.
308
Proof. by intros x n ??; exists a. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Lemma uPred_exist_elim `(P : A  uPred M) Q : ( a, P a  Q)  ( a, P a)%I  Q.
310
Proof. by intros HPQ x n ? [a ?]; apply HPQ with a. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
312

(* BI connectives *)
Robbert Krebbers's avatar
Robbert Krebbers committed
313
Lemma uPred_sep_elim_l P Q : (P  Q)%I  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
315
Proof.
  intros x n Hvalid (x1&x2&Hx&?&?); rewrite Hx in Hvalid |- *.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  by apply uPred_weaken with x1 n; auto using ra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
Global Instance uPred_sep_left_id : LeftId () True%I (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
319
320
321
Proof.
  intros P x n Hvalid; split.
  * intros (x1&x2&Hx&_&?); rewrite Hx in Hvalid |- *.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
    apply uPred_weaken with x2 n; auto using ra_included_r.
323
  * by intros ?; exists (unit x), x; rewrite ra_unit_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
Qed. 
Robbert Krebbers's avatar
Robbert Krebbers committed
325
Global Instance uPred_sep_commutative : Commutative () (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
326
327
Proof.
  by intros P Q x n ?; split;
328
    intros (x1&x2&?&?&?); exists x2, x1; rewrite (commutative op).
Robbert Krebbers's avatar
Robbert Krebbers committed
329
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
330
Global Instance uPred_sep_associative : Associative () (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
Proof.
  intros P Q R x n ?; split.
333
  * intros (x1&x2&Hx&?&y1&y2&Hy&?&?); exists (x1  y1), y2; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
    + by rewrite <-(associative op), <-Hy, <-Hx.
335
336
    + by exists x1, y1.
  * intros (x1&x2&Hx&(y1&y2&Hy&?&?)&?); exists y1, (y2  x2); split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
    + by rewrite (associative op), <-Hy, <-Hx.
338
    + by exists y2, x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
Lemma uPred_wand_intro P Q R : (R  P)%I  Q  R  (P - Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
Proof.
  intros HPQ x n ?? x' n' ???; apply HPQ; auto.
343
  exists x, x'; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
344
  eapply uPred_weaken with x n; eauto using cmra_valid_op_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
Lemma uPred_wand_elim P Q : ((P - Q)  P)%I  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348
349
Proof.
  by intros x n Hvalid (x1&x2&Hx&HPQ&?); rewrite Hx in Hvalid |- *; apply HPQ.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
350
Lemma uPred_sep_or P Q R : ((P  Q)  R)%I  ((P  R)  (Q  R))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
Proof.
352
353
  split; [by intros (x1&x2&Hx&[?|?]&?); [left|right]; exists x1, x2|].
  intros [(x1&x2&Hx&?&?)|(x1&x2&Hx&?&?)]; exists x1, x2; split_ands;
Robbert Krebbers's avatar
Robbert Krebbers committed
354
355
    first [by left | by right | done].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
Lemma uPred_sep_and P Q R : ((P  Q)  R)%I  ((P  R)  (Q  R))%I.
357
Proof. by intros x n ? (x1&x2&Hx&[??]&?); split; exists x1, x2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
Lemma uPred_sep_exist `(P : A  uPred M) Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
359
360
  (( b, P b)  Q)%I  ( b, P b  Q)%I.
Proof.
361
362
  split; [by intros (x1&x2&Hx&[a ?]&?); exists a, x1, x2|].
  intros [a (x1&x2&Hx&?&?)]; exists x1, x2; split_ands; by try exists a.
Robbert Krebbers's avatar
Robbert Krebbers committed
363
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
364
Lemma uPred_sep_forall `(P : A  uPred M) Q :
365
366
  (( a, P a)  Q)%I  ( a, P a  Q)%I.
Proof. by intros x n ? (x1&x2&Hx&?&?); intros a; exists x1, x2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
367
368

(* Later *)
Robbert Krebbers's avatar
Robbert Krebbers committed
369
Lemma uPred_later_weaken P : P  ( P)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
371
Proof.
  intros x [|n] ??; simpl in *; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
372
  apply uPred_weaken with x (S n); auto using cmra_valid_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
373
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
Lemma uPred_lub P : ( P  P)%I  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
376
Proof.
  intros x n ? HP; induction n as [|n IH]; [by apply HP|].
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  apply HP, IH, uPred_weaken with x (S n); eauto using cmra_valid_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379
Lemma uPred_later_impl P Q : ( (P  Q))%I  ( P   Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
381
382
383
Proof.
  intros x [|n] ? HPQ x' [|n'] ???; auto with lia.
  apply HPQ; auto using cmra_valid_S.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
Lemma uPred_later_and P Q : ( (P  Q))%I  ( P   Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
Proof. by intros x [|n]; split. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
Lemma uPred_later_or P Q : ( (P  Q))%I  ( P   Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
Proof. intros x [|n]; simpl; tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Lemma uPred_later_forall `(P : A  uPred M) : (  a, P a)%I  ( a,  P a)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
389
Proof. by intros x [|n]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Lemma uPred_later_exist `(P : A  uPred M) : ( a,  P a)%I  (  a, P a)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
Proof. by intros x [|n]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Lemma uPred_later_exist' `{Inhabited A} (P : A  uPred M) :
393
  (  a, P a)%I  ( a,  P a)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
395
Proof.
  intros x [|n]; split; try done.
396
  by destruct (_ : Inhabited A) as [a]; exists a.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Lemma uPred_later_sep P Q : ( (P  Q))%I  ( P   Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
400
Proof.
  intros x n ?; split.
401
  * destruct n as [|n]; simpl; [by exists x, x|intros (x1&x2&Hx&?&?)].
Robbert Krebbers's avatar
Robbert Krebbers committed
402
403
    destruct (cmra_extend_op x x1 x2 n)
      as ([y1 y2]&Hx'&Hy1&Hy2); auto using cmra_valid_S; simpl in *.
404
    exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1, Hy2].
Robbert Krebbers's avatar
Robbert Krebbers committed
405
  * destruct n as [|n]; simpl; [done|intros (x1&x2&Hx&?&?)].
406
    exists x1, x2; eauto using (dist_S (A:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
407
408
409
Qed.

(* Always *)
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Lemma uPred_always_necessity P : ( P)%I  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
412
  intros x n ??; apply uPred_weaken with (unit x) n;auto using ra_included_unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
Lemma uPred_always_intro P Q : ( P)%I  Q  ( P)%I  ( Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
416
417
418
Proof.
  intros HPQ x n ??; apply HPQ; simpl in *; auto using cmra_unit_valid.
  by rewrite ra_unit_idempotent.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
Lemma uPred_always_impl P Q : ( (P  Q))%I  (P  Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
421
422
423
Proof.
  intros x n ? HPQ x' n' ???.
  apply HPQ; auto using ra_unit_preserving, cmra_unit_valid.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
Lemma uPred_always_and P Q : ( (P  Q))%I  ( P   Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Lemma uPred_always_or P Q : ( (P  Q))%I  ( P   Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
428
Lemma uPred_always_forall `(P : A  uPred M) : (  a, P a)%I  ( a,  P a)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
Lemma uPred_always_exist `(P : A  uPred M) : (  a, P a)%I  ( a,  P a)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
432
Lemma uPred_always_and_always_box P Q : ( P  Q)%I  ( P  Q)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
433
Proof.
434
  intros x n ? [??]; exists (unit x), x; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
435
436
437
  by rewrite ra_unit_l, ra_unit_idempotent.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
438
(* Own *)
Robbert Krebbers's avatar
Robbert Krebbers committed
439
440
Lemma uPred_own_op (a1 a2 : M) :
  uPred_own (a1  a2)  (uPred_own a1  uPred_own a2)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
441
442
443
444
445
446
447
448
Proof.
  intros x n ?; split.
  * intros [z ?]; exists a1, (a2  z); split; [by rewrite (associative op)|].
    split. by exists (unit a1); rewrite ra_unit_r. by exists z.
  * intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1  z2).
    rewrite (associative op), <-(commutative op z1), <-!(associative op), <-Hy2.
    by rewrite (associative op), (commutative op z1), <-Hy1.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
449
Lemma uPred_own_valid (a : M) : uPred_own a  uPred_valid a.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
451
452
453
Proof.
  intros x n Hv [a' Hx]; simpl; rewrite Hx in Hv; eauto using cmra_valid_op_l.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
454
(* Fix *)
Robbert Krebbers's avatar
Robbert Krebbers committed
455
456
Lemma uPred_fixpoint_unfold (P : uPred M  uPred M) `{!Contractive P} :
  uPred_fixpoint P  P (uPred_fixpoint P).
Robbert Krebbers's avatar
Robbert Krebbers committed
457
458
Proof. apply fixpoint_unfold. Qed.
End logic.