diff --git a/gpfsl-examples/stack/proof_elim_graph.v b/gpfsl-examples/stack/proof_elim_graph.v index 366cd6dc22cbf1142c1e17a6154ffda374b0dd83..5c0c3ec4b80bb06149687695c49d3d40a7fbccbb 100644 --- a/gpfsl-examples/stack/proof_elim_graph.v +++ b/gpfsl-examples/stack/proof_elim_graph.v @@ -748,8 +748,8 @@ Lemma StackInv'_graph_master_acc_instance : ∀ γg s q G, StackInv' γg s q G ⊢ ∃ q', graph_master γg q' G ∗ (graph_master γg q' G -∗ StackInv' γg s q G). Proof. - intros. iDestruct 1 as (?????????) "[(?&?&?) ?]". - iExists _. iFrame. by iIntros "?". + intros. iDestruct 1 as (?????????) "[(?&$&?) ?]". + iIntros "$". by iFrame. Qed. Lemma StackInv'_graph_snap_instance :