Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
F
Fairis
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Fairis
Commits
e4c96015
Commit
e4c96015
authored
Jun 01, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Notations for X ⊆ Y ⊆ Z.
parent
d0131be5
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
6 additions
and
1 deletion
+6
-1
prelude/base.v
prelude/base.v
+5
-0
program_logic/invariants.v
program_logic/invariants.v
+1
-1
No files found.
prelude/base.v
View file @
e4c96015
...
...
@@ -637,6 +637,11 @@ Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : C_scope.
Notation
"( X ⊄ )"
:=
(
λ
Y
,
X
⊄
Y
)
(
only
parsing
)
:
C_scope
.
Notation
"( ⊄ X )"
:=
(
λ
Y
,
Y
⊄
X
)
(
only
parsing
)
:
C_scope
.
Notation
"X ⊆ Y ⊆ Z"
:=
(
X
⊆
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊆ Y ⊂ Z"
:=
(
X
⊆
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊆ Z"
:=
(
X
⊂
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊂ Z"
:=
(
X
⊂
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
(
**
The
class
[
Lexico
A
]
is
used
for
the
lexicographic
order
on
[
A
].
This
order
is
used
to
create
finite
maps
,
finite
sets
,
etc
,
and
is
typically
different
from
the
order
[(
⊆
)].
*
)
...
...
program_logic/invariants.v
View file @
e4c96015
...
...
@@ -34,7 +34,7 @@ Qed.
(
**
Fairly
explicit
form
of
opening
invariants
*
)
Lemma
inv_open
E
N
P
:
nclose
N
⊆
E
→
inv
N
P
⊢
∃
E
'
,
■
(
E
∖
nclose
N
⊆
E
'
∧
E
'
⊆
E
)
★
inv
N
P
⊢
∃
E
'
,
■
(
E
∖
nclose
N
⊆
E
'
⊆
E
)
★
|={
E
,
E
'
}=>
▷
P
★
(
▷
P
={
E
'
,
E
}=
★
True
).
Proof
.
rewrite
/
inv
.
iIntros
{?}
"Hinv"
.
iDestruct
"Hinv"
as
{
i
}
"[% #Hi]"
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment