Require Export modures.fin_maps modures.agree modures.excl iris.parameter. Record res (Σ : iParam) (A : cofeT) := Res { wld : mapRA positive (agreeRA A); pst : exclRA (istateC Σ); gst : icmra Σ A; }. Add Printing Constructor res. Arguments Res {_ _} _ _ _. Arguments wld {_ _} _. Arguments pst {_ _} _. Arguments gst {_ _} _. Instance: Params (@Res) 2. Instance: Params (@wld) 2. Instance: Params (@pst) 2. Instance: Params (@gst) 2. Section res. Context {Σ : iParam} {A : cofeT}. Implicit Types r : res Σ A. Inductive res_equiv' (r1 r2 : res Σ A) := Res_equiv : wld r1 ≡ wld r2 → pst r1 ≡ pst r2 → gst r1 ≡ gst r2 → res_equiv' r1 r2. Instance res_equiv : Equiv (res Σ A) := res_equiv'. Inductive res_dist' (n : nat) (r1 r2 : res Σ A) := Res_dist : wld r1 ={n}= wld r2 → pst r1 ={n}= pst r2 → gst r1 ={n}= gst r2 → res_dist' n r1 r2. Instance res_dist : Dist (res Σ A) := res_dist'. Global Instance Res_ne n : Proper (dist n ==> dist n ==> dist n ==> dist n) (@Res Σ A). Proof. done. Qed. Global Instance Res_proper : Proper ((≡) ==> (≡) ==> (≡) ==> (≡)) (@Res Σ A). Proof. done. Qed. Global Instance wld_ne n : Proper (dist n ==> dist n) (@wld Σ A). Proof. by destruct 1. Qed. Global Instance wld_proper : Proper ((≡) ==> (≡)) (@wld Σ A). Proof. by destruct 1. Qed. Global Instance pst_ne n : Proper (dist n ==> dist n) (@pst Σ A). Proof. by destruct 1. Qed. Global Instance pst_ne' n : Proper (dist (S n) ==> (≡)) (@pst Σ A). Proof. intros σ σ' [???]; apply (timeless _), dist_le with (S n); auto with lia. Qed. Global Instance pst_proper : Proper ((≡) ==> (=)) (@pst Σ A). Proof. by destruct 1; unfold_leibniz. Qed. Global Instance gst_ne n : Proper (dist n ==> dist n) (@gst Σ A). Proof. by destruct 1. Qed. Global Instance gst_proper : Proper ((≡) ==> (≡)) (@gst Σ A). Proof. by destruct 1. Qed. Instance res_compl : Compl (res Σ A) := λ c, Res (compl (chain_map wld c)) (compl (chain_map pst c)) (compl (chain_map gst c)). Definition res_cofe_mixin : CofeMixin (res Σ A). Proof. split. * intros w1 w2; split. + by destruct 1; constructor; apply equiv_dist. + by intros Hw; constructor; apply equiv_dist=>n; destruct (Hw n). * intros n; split. + done. + by destruct 1; constructor. + do 2 destruct 1; constructor; etransitivity; eauto. * by destruct 1; constructor; apply dist_S. * done. * intros c n; constructor. + apply (conv_compl (chain_map wld c) n). + apply (conv_compl (chain_map pst c) n). + apply (conv_compl (chain_map gst c) n). Qed. Canonical Structure resC : cofeT := CofeT res_cofe_mixin. Global Instance res_timeless r : Timeless (wld r) → Timeless (gst r) → Timeless r. Proof. by destruct 3; constructor; try apply (timeless _). Qed. Instance res_op : Op (res Σ A) := λ r1 r2, Res (wld r1 ⋅ wld r2) (pst r1 ⋅ pst r2) (gst r1 ⋅ gst r2). Global Instance res_empty : Empty (res Σ A) := Res ∅ ∅ ∅. Instance res_unit : Unit (res Σ A) := λ r, Res (unit (wld r)) (unit (pst r)) (unit (gst r)). Instance res_validN : ValidN (res Σ A) := λ n r, ✓{n} (wld r) ∧ ✓{n} (pst r) ∧ ✓{n} (gst r). Instance res_minus : Minus (res Σ A) := λ r1 r2, Res (wld r1 ⩪ wld r2) (pst r1 ⩪ pst r2) (gst r1 ⩪ gst r2). Lemma res_included (r1 r2 : res Σ A) : r1 ≼ r2 ↔ wld r1 ≼ wld r2 ∧ pst r1 ≼ pst r2 ∧ gst r1 ≼ gst r2. Proof. split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)]. intros [r Hr]; split_ands; [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr. Qed. Lemma res_includedN (r1 r2 : res Σ A) n : r1 ≼{n} r2 ↔ wld r1 ≼{n} wld r2 ∧ pst r1 ≼{n} pst r2 ∧ gst r1 ≼{n} gst r2. Proof. split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)]. intros [r Hr]; split_ands; [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr. Qed. Definition res_cmra_mixin : CMRAMixin (res Σ A). Proof. split. * by intros n x [???] ? [???]; constructor; simpl in *; cofe_subst. * by intros n [???] ? [???]; constructor; simpl in *; cofe_subst. * by intros n [???] ? [???] (?&?&?); split_ands'; simpl in *; cofe_subst. * by intros n [???] ? [???] [???] ? [???]; constructor; simpl in *; cofe_subst. * done. * by intros n ? (?&?&?); split_ands'; apply cmra_validN_S. * intros ???; constructor; simpl; apply (associative _). * intros ??; constructor; simpl; apply (commutative _). * intros ?; constructor; simpl; apply cmra_unit_l. * intros ?; constructor; simpl; apply cmra_unit_idempotent. * intros n r1 r2; rewrite !res_includedN. by intros (?&?&?); split_ands'; apply cmra_unit_preservingN. * intros n r1 r2 (?&?&?); split_ands'; simpl in *; eapply cmra_validN_op_l; eauto. * intros n r1 r2; rewrite res_includedN; intros (?&?&?). by constructor; apply cmra_op_minus. Qed. Definition res_cmra_extend_mixin : CMRAExtendMixin (res Σ A). Proof. intros n r r1 r2 (?&?&?) [???]; simpl in *. destruct (cmra_extend_op n (wld r) (wld r1) (wld r2)) as ([w w']&?&?&?), (cmra_extend_op n (pst r) (pst r1) (pst r2)) as ([σ σ']&?&?&?), (cmra_extend_op n (gst r) (gst r1) (gst r2)) as ([m m']&?&?&?); auto. by exists (Res w σ m, Res w' σ' m'). Qed. Canonical Structure resRA : cmraT := CMRAT res_cofe_mixin res_cmra_mixin res_cmra_extend_mixin. Global Instance res_cmra_identity : CMRAIdentity resRA. Proof. split. * intros n; split_ands'; apply cmra_empty_valid. * by split; rewrite /= (left_id _ _). * apply _. Qed. Definition update_pst (σ : istate Σ) (r : res Σ A) : res Σ A := Res (wld r) (Excl σ) (gst r). Definition update_gst (m : icmra Σ A) (r : res Σ A) : res Σ A := Res (wld r) (pst r) m. Lemma wld_validN n r : ✓{n} r → ✓{n} (wld r). Proof. by intros (?&?&?). Qed. Lemma gst_validN n r : ✓{n} r → ✓{n} (gst r). Proof. by intros (?&?&?). Qed. Lemma Res_op w1 w2 σ1 σ2 m1 m2 : Res w1 σ1 m1 ⋅ Res w2 σ2 m2 = Res (w1 ⋅ w2) (σ1 ⋅ σ2) (m1 ⋅ m2). Proof. done. Qed. Lemma Res_unit w σ m : unit (Res w σ m) = Res (unit w) (unit σ) (unit m). Proof. done. Qed. Lemma lookup_wld_op_l n r1 r2 i P : ✓{n} (r1⋅r2) → wld r1 !! i ={n}= Some P → (wld r1 ⋅ wld r2) !! i ={n}= Some P. Proof. move=>/wld_validN /(_ i) Hval Hi1P; move: Hi1P Hval; rewrite lookup_op. destruct (wld r2 !! i) as [P'|] eqn:Hi; rewrite !Hi ?right_id // =>-> ?. by constructor; rewrite (agree_op_inv P P') // agree_idempotent. Qed. Lemma lookup_wld_op_r n r1 r2 i P : ✓{n} (r1⋅r2) → wld r2 !! i ={n}= Some P → (wld r1 ⋅ wld r2) !! i ={n}= Some P. Proof. rewrite (commutative _ r1) (commutative _ (wld r1)); apply lookup_wld_op_l. Qed. Global Instance Res_timeless eσ m : Timeless m → Timeless (Res ∅ eσ m). Proof. by intros ? ? [???]; constructor; apply (timeless _). Qed. End res. Arguments resRA : clear implicits. Definition res_map {Σ A B} (f : A -n> B) (r : res Σ A) : res Σ B := Res (agree_map f <$> (wld r)) (pst r) (icmra_map Σ f (gst r)). Instance res_map_ne Σ (A B : cofeT) (f : A -n> B) : (∀ n, Proper (dist n ==> dist n) f) → ∀ n, Proper (dist n ==> dist n) (@res_map Σ _ _ f). Proof. by intros Hf n [] ? [???]; constructor; simpl in *; cofe_subst. Qed. Lemma res_map_id {Σ A} (r : res Σ A) : res_map cid r ≡ r. Proof. constructor; simpl; [|done|]. * rewrite -{2}(map_fmap_id (wld r)); apply map_fmap_setoid_ext=> i y ? /=. by rewrite -{2}(agree_map_id y); apply agree_map_ext=> y' /=. * by rewrite -{2}(icmra_map_id Σ (gst r)); apply icmra_map_ext=> m /=. Qed. Lemma res_map_compose {Σ A B C} (f : A -n> B) (g : B -n> C) (r : res Σ A) : res_map (g ◎ f) r ≡ res_map g (res_map f r). Proof. constructor; simpl; [|done|]. * rewrite -map_fmap_compose; apply map_fmap_setoid_ext=> i y _ /=. by rewrite -agree_map_compose; apply agree_map_ext=> y' /=. * by rewrite -icmra_map_compose; apply icmra_map_ext=> m /=. Qed. Lemma res_map_ext {Σ A B} (f g : A -n> B) (r : res Σ A) : (∀ x, f x ≡ g x) → res_map f r ≡ res_map g r. Proof. intros Hfg; split; simpl; auto. * by apply map_fmap_setoid_ext=>i x ?; apply agree_map_ext. * by apply icmra_map_ext. Qed. Definition resRA_map {Σ A B} (f : A -n> B) : resRA Σ A -n> resRA Σ B := CofeMor (res_map f : resRA Σ A → resRA Σ B). Instance res_map_cmra_monotone {Σ} {A B : cofeT} (f : A -n> B) : CMRAMonotone (@res_map Σ _ _ f). Proof. split. * by intros n r1 r2; rewrite !res_includedN; intros (?&?&?); split_ands'; simpl; try apply includedN_preserving. * by intros n r (?&?&?); split_ands'; simpl; try apply validN_preserving. Qed. Instance resRA_map_ne {Σ A B} n : Proper (dist n ==> dist n) (@resRA_map Σ A B). Proof. intros f g Hfg r; split; simpl; auto. * by apply (mapRA_map_ne _ (agreeRA_map f) (agreeRA_map g)), agreeRA_map_ne. * by apply icmra_map_ne. Qed.