Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
Fairis
Commits
dbeafa69
Commit
dbeafa69
authored
Jun 01, 2018
by
Ralf Jung
Browse files
fix more warnings
parent
30506849
Pipeline
#9214
passed with stage
in 12 minutes and 45 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
theories/algebra/irelations.v
View file @
dbeafa69
...
...
@@ -13,6 +13,7 @@
From
Coq
Require
Import
Wf_nat
Omega
.
From
stdpp
Require
Export
tactics
base
relations
list
collections
.
From
stdpp
Require
set
.
(
**
*
Definitions
*
)
Section
definitions
.
...
...
@@ -979,7 +980,7 @@ Section cofair.
Lemma
co_se_trace_valid
{
x1
}
{
e
:
trace
R1
x1
}
{
x2
}
(
ST
:
co_se_trace
e
x2
)
:
co_se
e
(
co_se_trace_extract
ST
).
Proof
.
revert
x1
e
x2
ST
;
cofix
;
intros
.
revert
x1
e
x2
ST
;
cofix
COFIX
;
intros
.
destruct
ST
;
subst
.
unfold
co_se_trace_extract
.
rewrite
trace_aux_id
;
simpl
.
...
...
@@ -1336,7 +1337,7 @@ Section cofair.
End
erasure
.
Section
block
.
From
stdpp
Require
Export
set
.
Import
stdpp
.
set
.
Context
(
flatten
:
A
→
B
*
(
nat
→
set
nat
)).
Context
(
flatten_spec_step
:
∀
i
a
a
'
,
R1
i
a
a
'
→
...
...
theories/prelude/set_finite_setoid.v
View file @
dbeafa69
...
...
@@ -2,6 +2,8 @@ From Coq.ssr Require Export ssreflect.
From
fri
.
prelude
Require
Export
list
compact
.
From
stdpp
Require
Export
prelude
mapset
.
From
stdpp
Require
Export
set
natmap
fin_collections
collections
fin_maps
.
From
stdpp
Require
set
.
From
Coq
Require
Classical_Pred_Type
.
Lemma
subseteq_union_decompose
:
∀
(
A
B
C
:
natset
),
A
⊆
B
∪
C
→
∃
B
'
C
'
,
B
'
⊆
B
∧
C
'
⊆
C
∧
A
≡
B
'
∪
C
'
.
...
...
@@ -131,8 +133,7 @@ Qed.
Section
compact_setoid
.
From
stdpp
Require
Import
set
.
From
Coq
Require
Import
Classical_Pred_Type
.
Import
stdpp
.
set
Classical_Pred_Type
.
Definition
set_finite_setoid
`
{
Equiv
A
}
{
B
}
{
H
:
ElemOf
A
B
}
(
X
:
B
)
:
Prop
:=
∃
l
:
list
A
,
∀
x
:
A
,
x
∈
X
→
∃
x
'
:
A
,
x
≡
x
'
∧
x
'
∈
l
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment