Commit a467cde4 authored by Robbert Krebbers's avatar Robbert Krebbers

Rename box_slice into slice.

And use slice_name, which is defined as gname but Opaque, instead
of gname in boxes.
parent eb7a762b
......@@ -13,29 +13,31 @@ Section box_defs.
Context `{boxG Λ Σ} (N : namespace).
Notation iProp := (iPropG Λ Σ).
Definition box_own_auth (γ : gname) (a : auth (option (excl bool))) : iProp :=
own γ (a, ).
Definition slice_name := gname.
Definition box_own_prop (γ : gname) (P : iProp) : iProp :=
Definition box_own_auth (γ : slice_name)
(a : auth (option (excl bool))) : iProp := own γ (a, ).
Definition box_own_prop (γ : slice_name) (P : iProp) : iProp :=
own γ (:auth _, Some (to_agree (Next (iProp_unfold P)))).
Definition box_slice_inv (γ : gname) (P : iProp) : iProp :=
Definition slice_inv (γ : slice_name) (P : iProp) : iProp :=
( b, box_own_auth γ ( Excl' b) box_own_prop γ P if b then P else True)%I.
Definition box_slice (γ : gname) (P : iProp) : iProp :=
inv N (box_slice_inv γ P).
Definition slice (γ : slice_name) (P : iProp) : iProp :=
inv N (slice_inv γ P).
Definition box (f : gmap gname bool) (P : iProp) : iProp :=
( Φ : gname iProp,
Definition box (f : gmap slice_name bool) (P : iProp) : iProp :=
( Φ : slice_name iProp,
(P [ map] γ b f, Φ γ)
[ map] γ b f, box_own_auth γ ( Excl' b) box_own_prop γ (Φ γ)
inv N (box_slice_inv γ (Φ γ)))%I.
inv N (slice_inv γ (Φ γ)))%I.
End box_defs.
Instance: Params (@box_own_auth) 4.
Instance: Params (@box_own_prop) 4.
Instance: Params (@box_slice_inv) 4.
Instance: Params (@box_slice) 5.
Instance: Params (@slice_inv) 4.
Instance: Params (@slice) 5.
Instance: Params (@box) 5.
Section box.
......@@ -46,13 +48,13 @@ Implicit Types P Q : iProp.
(* FIXME: solve_proper picks the eq ==> instance for Next. *)
Global Instance box_own_prop_ne n γ : Proper (dist n ==> dist n) (box_own_prop γ).
Proof. solve_proper. Qed.
Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (box_slice_inv γ).
Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ).
Proof. solve_proper. Qed.
Global Instance box_slice_ne n γ : Proper (dist n ==> dist n) (box_slice N γ).
Global Instance slice_ne n γ : Proper (dist n ==> dist n) (slice N γ).
Proof. solve_proper. Qed.
Global Instance box_ne n f : Proper (dist n ==> dist n) (box N f).
Proof. solve_proper. Qed.
Global Instance box_slice_persistent γ P : PersistentP (box_slice N γ P).
Global Instance slice_persistent γ P : PersistentP (slice N γ P).
Proof. apply _. Qed.
(* This should go automatic *)
......@@ -95,7 +97,7 @@ Qed.
Lemma box_insert f P Q :
box N f P ={N}=> γ, f !! γ = None
box_slice N γ Q box N (<[γ:=false]> f) (Q P).
slice N γ Q box N (<[γ:=false]> f) (Q P).
Proof.
iIntros "H"; iDestruct "H" as {Φ} "[#HeqP Hf]".
iPvs (own_alloc_strong ( Excl' false Excl' false,
......@@ -103,7 +105,7 @@ Proof.
as {γ} "[Hdom Hγ]"; first done.
rewrite pair_split. iDestruct "Hγ" as "[[Hγ Hγ'] #HγQ]".
iDestruct "Hdom" as % ?%not_elem_of_dom.
iPvs (inv_alloc N _ (box_slice_inv γ Q) with "[Hγ]") as "#Hinv"; first done.
iPvs (inv_alloc N _ (slice_inv γ Q) with "[Hγ]") as "#Hinv"; first done.
{ iNext. iExists false; eauto. }
iPvsIntro; iExists γ; repeat iSplit; auto.
iNext. iExists (<[γ:=Q]> Φ); iSplit.
......@@ -114,7 +116,7 @@ Qed.
Lemma box_delete f P Q γ :
f !! γ = Some false
box_slice N γ Q box N f P ={N}=> P',
slice N γ Q box N f P ={N}=> P',
(P (Q P')) box N (delete γ f) P'.
Proof.
iIntros {?} "[#Hinv H]"; iDestruct "H" as {Φ} "[#HeqP Hf]".
......@@ -133,7 +135,7 @@ Qed.
Lemma box_fill f γ P Q :
f !! γ = Some false
box_slice N γ Q Q box N f P ={N}=> box N (<[γ:=true]> f) P.
slice N γ Q Q box N f P ={N}=> box N (<[γ:=true]> f) P.
Proof.
iIntros {?} "(#Hinv & HQ & H)"; iDestruct "H" as {Φ} "[#HeqP Hf]".
iInv N as {b'} "(Hγ & #HγQ & _)"; iTimeless "Hγ".
......@@ -151,7 +153,7 @@ Qed.
Lemma box_empty f P Q γ :
f !! γ = Some true
box_slice N γ Q box N f P ={N}=> Q box N (<[γ:=false]> f) P.
slice N γ Q box N f P ={N}=> Q box N (<[γ:=false]> f) P.
Proof.
iIntros {?} "[#Hinv H]"; iDestruct "H" as {Φ} "[#HeqP Hf]".
iInv N as {b} "(Hγ & #HγQ & HQ)"; iTimeless "Hγ".
......@@ -191,7 +193,7 @@ Lemma box_empty_all f P Q :
Proof.
iIntros {?} "H"; iDestruct "H" as {Φ} "[#HeqP Hf]".
iAssert ([ map] γ↦b f, Φ γ box_own_auth γ ( Excl' false)
box_own_prop γ (Φ γ) inv N (box_slice_inv γ (Φ γ)))%I with "=>[Hf]" as "[HΦ ?]".
box_own_prop γ (Φ γ) inv N (slice_inv γ (Φ γ)))%I with "=>[Hf]" as "[HΦ ?]".
{ iApply (pvs_big_sepM _ _ f); iApply (big_sepM_impl _ _ f); iFrame "Hf".
iAlways; iIntros {γ b ?} "(Hγ' & #$ & #$)".
assert (true = b) as <- by eauto.
......@@ -207,4 +209,4 @@ Proof.
Qed.
End box.
Typeclasses Opaque box_slice box.
Typeclasses Opaque slice_name slice box.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment