Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Fairis
Commits
a34133c2
Commit
a34133c2
authored
Feb 14, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
More properties about auth_own.
parent
d44228a5
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
0 deletions
+7
-0
program_logic/auth.v
program_logic/auth.v
+7
-0
No files found.
program_logic/auth.v
View file @
a34133c2
...
@@ -30,9 +30,16 @@ Section auth.
...
@@ -30,9 +30,16 @@ Section auth.
Implicit
Types
a
b
:
A
.
Implicit
Types
a
b
:
A
.
Implicit
Types
γ
:
gname
.
Implicit
Types
γ
:
gname
.
Global
Instance
auth_own_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
auth_own
AuthI
γ
).
Proof
.
by
rewrite
/
auth_own
=>
a
b
->
.
Qed
.
Global
Instance
auth_own_proper
γ
:
Proper
((
≡
)
==>
(
≡
))
(
auth_own
AuthI
γ
).
Proof
.
by
rewrite
/
auth_own
=>
a
b
->
.
Qed
.
Lemma
auto_own_op
γ
a
b
:
Lemma
auto_own_op
γ
a
b
:
auth_own
AuthI
γ
(
a
⋅
b
)
≡
(
auth_own
AuthI
γ
a
★
auth_own
AuthI
γ
b
)
%
I
.
auth_own
AuthI
γ
(
a
⋅
b
)
≡
(
auth_own
AuthI
γ
a
★
auth_own
AuthI
γ
b
)
%
I
.
Proof
.
by
rewrite
/
auth_own
-
own_op
auth_frag_op
.
Qed
.
Proof
.
by
rewrite
/
auth_own
-
own_op
auth_frag_op
.
Qed
.
Lemma
auto_own_valid
γ
a
:
auth_own
AuthI
γ
a
⊑
✓
a
.
Proof
.
by
rewrite
/
auth_own
own_valid
auth_validI
.
Qed
.
Lemma
auth_alloc
N
a
:
Lemma
auth_alloc
N
a
:
✓
a
→
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
AuthI
γ
N
φ
∧
auth_own
AuthI
γ
a
).
✓
a
→
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
AuthI
γ
N
φ
∧
auth_own
AuthI
γ
a
).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment