Commit 5fb53667 authored by Robbert Krebbers's avatar Robbert Krebbers

Try-out with new lines.

parent b91562fe
......@@ -208,6 +208,7 @@ Proof.
Instance: Injective (=) (=) of_val.
Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
Instance ectx_item_fill_inj Ki : Injective (=) (=) (ectx_item_fill Ki).
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
Instance ectx_fill_inj K : Injective (=) (=) (fill K).
......@@ -221,11 +222,13 @@ Proof.
Lemma fill_not_val K e : to_val e = None to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
head_step e1 σ1 e2 σ2 ef to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
Lemma atomic_not_val e : atomic e to_val e = None.
Proof. destruct e; naive_solver. Qed.
Lemma atomic_fill K e : atomic (fill K e) to_val e = None K = [].
......@@ -243,9 +246,11 @@ Proof.
assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
naive_solver eauto using atomic_head_step.
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
head_step (ectx_item_fill Ki e) σ1 e2 σ2 ef is_Some (to_val e).
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
Lemma fill_item_inj Ki1 Ki2 e1 e2 :
to_val e1 = None to_val e2 = None
ectx_item_fill Ki1 e1 = ectx_item_fill Ki2 e2 Ki1 = Ki2.
......@@ -270,6 +275,7 @@ Proof.
cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
eauto using fill_item_inj, values_head_stuck, fill_not_val.
Lemma alloc_fresh e v σ :
let l := fresh (dom _ σ) in
to_val e = Some v head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment