Commit 332f96de authored by Robbert Krebbers's avatar Robbert Krebbers

Make reshape_expr more robust.

It now also reshapes expressions as values for contexts that need
values such as AppECtx.
parent e18882f0
......@@ -30,25 +30,32 @@ Ltac inv_step :=
(** The tactic [reshape_expr e tac] decomposes the expression [e] into an
evaluation context [K] and a subexpression [e']. It calls the tactic [tac K e']
for each possible decomposition until [tac] succeeds. *)
Ltac reshape_val e tac :=
let rec go e :=
match e with
| of_val ?v => v
| Rec ?f ?x ?e => constr:(RecV f x e)
| Lit ?l => constr:(LitV l)
| Pair ?e1 ?e2 =>
let v1 := reshape_val e1 in let v2 := reshape_val e2 in constr:(PairV v1 v2)
| InjL ?e => let v := reshape_val e in constr:(InjLV v)
| InjR ?e => let v := reshape_val e in constr:(InjRV v)
| Loc ?l => constr:(LocV l)
end in let v := go e in first [tac v | fail 2].
Ltac reshape_expr e tac :=
let rec go K e :=
match e with
| _ => tac (reverse K) e
| App ?e1 ?e2 =>
lazymatch e1 with
| of_val ?v1 => go (AppRCtx v1 :: K) e2 | _ => go (AppLCtx e2 :: K) e1
end
| UnOp ?op ?e =>
go (UnOpCtx op :: K) e
| App ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (AppRCtx v1 :: K) e2)
| App ?e1 ?e2 => go (AppLCtx e2 :: K) e1
| UnOp ?op ?e => go (UnOpCtx op :: K) e
| BinOp ?op ?e1 ?e2 =>
lazymatch e1 with
| of_val ?v1 => go (BinOpRCtx op v1 :: K) e2 | _ => go (BinOpLCtx op e2 :: K) e1
end
reshape_val e1 ltac:(fun v1 => go (BinOpRCtx op v1 :: K) e2)
| BinOp ?op ?e1 ?e2 => go (BinOpLCtx op e2 :: K) e1
| If ?e0 ?e1 ?e2 => go (IfCtx e1 e2 :: K) e0
| Pair ?e1 ?e2 =>
lazymatch e1 with
| of_val ?v1 => go (PairRCtx v1 :: K) e2 | _ => go (PairLCtx e2 :: K) e1
end
| Pair ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (PairRCtx v1 :: K) e2)
| Pair ?e1 ?e2 => go (PairLCtx e2 :: K) e1
| Fst ?e => go (FstCtx :: K) e
| Snd ?e => go (SndCtx :: K) e
| InjL ?e => go (InjLCtx :: K) e
......@@ -56,16 +63,12 @@ Ltac reshape_expr e tac :=
| Case ?e0 ?e1 ?e2 => go (CaseCtx e1 e2 :: K) e0
| Alloc ?e => go (AllocCtx :: K) e
| Load ?e => go (LoadCtx :: K) e
| Store ?e1 ?e2 => go (StoreLCtx e2 :: K) e1 || go (StoreRCtx e1 :: K) e2
| Cas ?e0 ?e1 ?e2 =>
lazymatch e0 with
| of_val ?v0 =>
lazymatch e1 with
| of_val ?v1 => go (CasRCtx v0 v1 :: K) e2
| _ => go (CasMCtx v0 e2 :: K) e1
end
| _ => go (CasLCtx e1 e2 :: K) e0
end
| Store ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (StoreRCtx v1 :: K) e2)
| Store ?e1 ?e2 => go (StoreLCtx e2 :: K) e1
| Cas ?e0 ?e1 ?e2 => reshape_val e0 ltac:(fun v0 => first
[ reshape_val e1 ltac:(fun v1 => go (CasRCtx v0 v1 :: K) e2)
| go (CasMCtx v0 e2 :: K) e1 ])
| Cas ?e0 ?e1 ?e2 => go (CasLCtx e1 e2 :: K) e0
end in go (@nil ectx_item) e.
(** The tactic [do_step tac] solves goals of the shape [reducible], [prim_step]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment