heap_lang.v 10.5 KB
Newer Older
1
Require Export Autosubst.Autosubst.
2 3
Require Export iris.language.
Require Import prelude.gmap.
4

5 6
Module heap_lang.
(** Expressions and vals. *)
7
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
8

Ralf Jung's avatar
Ralf Jung committed
9
Inductive expr :=
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
  (* Base lambda calculus *)
  | Var (x : var)
  | Rec (e : {bind 2 of expr}) (* These are recursive lambdas.
                                  The *inner* binder is the recursive call! *)
  | App (e1 e2 : expr)
  (* Natural numbers *)
  | LitNat (n : nat)
  | Plus (e1 e2 : expr)
  | Le (e1 e2 : expr)
  (* Unit *)
  | LitUnit
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : {bind expr}) (e2 : {bind expr})
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
37 38 39 40 41 42

Instance Ids_expr : Ids expr. derive. Defined.
Instance Rename_expr : Rename expr. derive. Defined.
Instance Subst_expr : Subst expr. derive. Defined.
Instance SubstLemmas_expr : SubstLemmas expr. derive. Qed.

43 44 45 46 47 48 49 50 51 52 53 54 55 56
(* This sugar is used by primitive reduction riles (<=, CAS) and hence
defined here. *)
Notation LitTrue := (InjL LitUnit).
Notation LitFalse := (InjR LitUnit).

Inductive val :=
  | RecV (e : {bind 2 of expr}) (* These are recursive lambdas.
                                   The *inner* binder is the recursive call! *)
  | LitNatV (n : nat)
  | LitUnitV
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
57

Ralf Jung's avatar
Ralf Jung committed
58 59
Definition LitTrueV := InjLV LitUnitV.
Definition LitFalseV := InjRV LitUnitV.
Ralf Jung's avatar
Ralf Jung committed
60

61
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
62
  match v with
63
  | RecV e => Rec e
64 65
  | LitNatV n => LitNat n
  | LitUnitV => LitUnit
66 67 68
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
69
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
70
  end.
71
Fixpoint to_val (e : expr) : option val :=
72
  match e with
Ralf Jung's avatar
Ralf Jung committed
73
  | Rec e => Some (RecV e)
74 75
  | LitNat n => Some (LitNatV n)
  | LitUnit => Some LitUnitV
76 77 78
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
79
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
80
  | _ => None
81 82
  end.

83 84
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
85

86
(** Evaluation contexts *)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
  | PlusLCtx (e2 : expr)
  | PlusRCtx (v1 : val)
  | LeLCtx (e2 : expr)
  | LeRCtx (v1 : val)
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
  | CaseCtx (e1 : {bind expr}) (e2 : {bind expr})
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
108

109
Notation ectx := (list ectx_item).
110

111
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
  | PlusLCtx e2 => Plus e e2
  | PlusRCtx v1 => Plus (of_val v1) e
  | LeLCtx e2 => Le e e2
  | LeRCtx v1 => Le (of_val v1) e
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
  | CaseCtx e1 e2 => Case e e1 e2
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
133
  end.
134
Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
(** The stepping relation *)
Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
  | BetaS e1 e2 v2 σ :
     to_val e2 = Some v2 
     head_step (App (Rec e1) e2) σ e1.[(Rec e1),e2/] σ None
  | PlusS n1 n2 σ:
     head_step (Plus (LitNat n1) (LitNat n2)) σ (LitNat (n1 + n2)) σ None
  | LeTrueS n1 n2 σ :
     n1  n2 
     head_step (Le (LitNat n1) (LitNat n2)) σ LitTrue σ None
  | LeFalseS n1 n2 σ :
     n1 > n2 
     head_step (Le (LitNat n1) (LitNat n2)) σ LitFalse σ None
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
  | CaseLS e0 v0 e1 e2 σ :
     to_val e0 = Some v0 
     head_step (Case (InjL e0) e1 e2) σ e1.[e0/] σ None
  | CaseRS e0 v0 e1 e2 σ :
     to_val e0 = Some v0 
     head_step (Case (InjR e0) e1 e2) σ e2.[e0/] σ None
  | ForkS e σ:
     head_step (Fork e) σ LitUnit σ (Some e)
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
     head_step (Store (Loc l) e) σ LitUnit (<[l:=v]>σ) None
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
     head_step (Cas (Loc l) e1 e2) σ LitFalse σ None
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
     head_step (Cas (Loc l) e1 e2) σ LitTrue (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
180

181 182 183 184 185 186 187 188 189
(** Atomic expressions *)
Definition atomic (e: expr) :=
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
  | _ => False
  end.
190

191 192 193 194
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
195
  Ectx_step K e1' e2' :
196 197 198 199 200 201
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof. by induction v; simplify_option_equality. Qed.
202

203
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
204
Proof.
205
  revert v; induction e; intros; simplify_option_equality; auto with f_equal.
206
Qed.
207

208 209
Instance: Injective (=) (=) of_val.
Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
210

211
Instance fill_item_inj Ki : Injective (=) (=) (fill_item Ki).
212
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
213

214 215
Instance ectx_fill_inj K : Injective (=) (=) (fill K).
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
216

217 218
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
219

220
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
221
Proof.
222 223
  intros [v' Hv']; revert v' Hv'.
  induction K as [|[]]; intros; simplify_option_equality; eauto.
224
Qed.
225

226 227
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
228

229 230 231
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
232

233 234
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
235

236 237
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
238

239
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
240
Proof.
241 242
  rewrite eq_None_not_Some.
  destruct K as [|[]]; naive_solver eauto using fill_val.
243
Qed.
244

245 246 247
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Proof. destruct 2; simpl; rewrite ?to_of_val; naive_solver. Qed.
248

249 250
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
251
Proof.
252 253 254
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
255
Qed.
256

257
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
258
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
259
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
260

261
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
262
  to_val e1 = None  to_val e2 = None 
263
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
264
Proof.
265
  destruct Ki1, Ki2; intros; try discriminate; simplify_equality';
Ralf Jung's avatar
Ralf Jung committed
266
    try match goal with
267 268
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
269
Qed.
270

271 272 273 274 275 276
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
277
Proof.
278 279 280
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
  destruct K' as [|Ki' K']; simplify_equality'.
Ralf Jung's avatar
Ralf Jung committed
281
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
282 283
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
284
  eauto using fill_item_no_val_inj, values_head_stuck, fill_not_val.
285
Qed.
286

287 288 289
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
290
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
291

292 293 294 295 296 297 298 299 300 301
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
302

303
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
304
Proof.
305 306
  split.
  * eauto using heap_lang.fill_not_val.
307
  * intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
308
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
309
  * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
310 311 312
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
    rewrite heap_lang.fill_app in Heq1; apply (injective _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
313
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
314
    econstructor; eauto.
315
Qed.