From d579dc8dedafd52d02938d664492a64311069619 Mon Sep 17 00:00:00 2001
From: Ralf Jung
Date: Wed, 19 Jun 2019 11:59:52 +0200
Subject: [PATCH] bump Iris for comparison changes

opam  2 +
.../concurrent_stacks/concurrent_stack1.v  85 ++++++++++
.../concurrent_stacks/concurrent_stack2.v  78 ++++++++
.../concurrent_stacks/concurrent_stack3.v  65 +++++++
.../concurrent_stacks/concurrent_stack4.v  65 +++++++
theories/hocap/fg_bag.v  77 +++++++++
theories/logatom/elimination_stack/stack.v  12 ++
theories/logatom/treiber2.v  6 +
theories/logrel_heaplang/ltyping.v  5 +
theories/spanning_tree/spanning.v  4 +
10 files changed, 209 insertions(+), 190 deletions()
diff git a/opam b/opam
index 5888ae5..1611db5 100644
 a/opam
+++ b/opam
@@ 9,6 +9,6 @@ build: [make "j%{jobs}%"]
install: [make "install"]
remove: ["rm" "rf" "%{lib}%/coq/usercontrib/iris_examples"]
depends: [
 "coqiris" { (= "dev.20190618.2.e039d7c7")  (= "dev") }
+ "coqiris" { (= "dev.20190618.8.72595700")  (= "dev") }
"coqautosubst" { = "dev.coq86" }
]
diff git a/theories/concurrent_stacks/concurrent_stack1.v b/theories/concurrent_stacks/concurrent_stack1.v
index 2ce3dd9..ef69142 100644
 a/theories/concurrent_stacks/concurrent_stack1.v
+++ b/theories/concurrent_stacks/concurrent_stack1.v
@@ 36,9 +36,19 @@ Section stacks.
iIntros "H"; iDestruct "H" as (?) "[Hl Hl']"; iSplitL "Hl"; eauto.
Qed.
 Definition is_list_pre (P : val → iProp Σ) (F : val d> iProp Σ) :
 val d> iProp Σ := λ v,
 (v ≡ NONEV ∨ ∃ (l : loc) (h t : val), ⌜v ≡ SOMEV #l⌝ ∗ l ↦{} (h, t)%V ∗ P h ∗ ▷ F t)%I.
+ Definition oloc_to_val (ol: option loc) : val :=
+ match ol with
+  None => NONEV
+  Some loc => SOMEV (#loc)
+ end.
+ Local Instance oloc_to_val_inj : Inj (=) (=) oloc_to_val.
+ Proof. intros [][]; simpl; congruence. Qed.
+
+ Definition is_list_pre (P : val → iProp Σ) (F : option loc d> iProp Σ) :
+ option loc d> iProp Σ := λ v, match v with
+  None => True
+  Some l => ∃ (h : val) (t : option loc), l ↦{} (h, oloc_to_val t)%V ∗ P h ∗ ▷ F t
+ end%I.
Local Instance is_list_contr (P : val → iProp Σ) : Contractive (is_list_pre P).
Proof.
@@ 58,28 +68,22 @@ Section stacks.
rewrite is_list_eq. apply (fixpoint_unfold (is_list_pre P)).
Qed.
 (* TODO: shouldn't have to explicitly return is_list *)
 Lemma is_list_unboxed (P : val → iProp Σ) v :
 is_list P v ∗ ⌜val_is_unboxed v⌝ ∗ is_list P v.
 Proof.
 iIntros "Hstack"; iSplit; last done;
 iDestruct (is_list_unfold with "Hstack") as "[>Hstack]";
 last iDestruct "Hstack" as (l h t) "(> & _)"; done.
 Qed.

 Lemma is_list_disj (P : val → iProp Σ) v :
 is_list P v ∗ is_list P v ∗ (⌜v ≡ NONEV⌝ ∨ ∃ (l : loc) h t, ⌜v ≡ SOMEV #l%V⌝ ∗ l ↦{} (h, t)%V).
+ Lemma is_list_dup (P : val → iProp Σ) v :
+ is_list P v ∗ is_list P v ∗ match v with
+  None => True
+  Some l => ∃ h t, l ↦{} (h, oloc_to_val t)%V
+ end.
Proof.
 iIntros "Hstack".
 iDestruct (is_list_unfold with "Hstack") as "[%Hstack]"; simplify_eq.
  rewrite is_list_unfold; iSplitR; [iLeft]; eauto.
  iDestruct "Hstack" as (l h t) "(% & Hl & Hlist)".
 iDestruct (partial_mapsto_duplicable with "Hl") as "[Hl1 Hl2]"; simplify_eq.
 rewrite (is_list_unfold _ (InjRV _)); iSplitR "Hl2"; iRight; iExists _, _, _; by iFrame.
+ iIntros "Hstack". iDestruct (is_list_unfold with "Hstack") as "Hstack".
+ destruct v as [l].
+  iDestruct "Hstack" as (h t) "(Hl & Hlist)".
+ iDestruct (partial_mapsto_duplicable with "Hl") as "[Hl1 Hl2]".
+ rewrite (is_list_unfold _ (Some _)); iSplitR "Hl2"; iExists _, _; by iFrame.
+  rewrite is_list_unfold; iSplitR; eauto.
Qed.
Definition stack_inv P v :=
 (∃ l v', ⌜v = #l⌝ ∗ l ↦ v' ∗ is_list P v')%I.
+ (∃ l ol', ⌜v = #l⌝ ∗ l ↦ oloc_to_val ol' ∗ is_list P ol')%I.
Definition is_stack (P : val → iProp Σ) v :=
inv N (stack_inv P v).
@@ 92,8 +96,8 @@ Section stacks.
wp_lam.
wp_alloc ℓ as "Hl".
iMod (inv_alloc N ⊤ (stack_inv P #ℓ) with "[Hl]") as "Hinv".
 { iNext; iExists ℓ, NONEV; iFrame;
 by iSplit; last (iApply is_list_unfold; iLeft). }
+ { iNext; iExists ℓ, None; iFrame;
+ by iSplit; last (iApply is_list_unfold). }
by iApply "Hpost".
Qed.
@@ 109,17 +113,17 @@ Section stacks.
{ iNext; iExists _, _; by iFrame. }
iModIntro. wp_let. wp_alloc ℓ' as "Hl'". wp_pures. wp_bind (CAS _ _ _).
iInv N as (ℓ'' v'') "(>% & >Hl & Hlist)" "Hclose"; simplify_eq.
 destruct (decide (v' = v'')) as [ > ].
  iDestruct (is_list_unboxed with "Hlist") as "[>% Hlist]".
 wp_cas_suc.
+ destruct (decide (v' = v'')) as [>Hne].
+  wp_cas_suc. { destruct v''; left; done. }
iMod ("Hclose" with "[HP Hl Hl' Hlist]") as "_".
 { iNext; iExists _, (InjRV #ℓ'); iFrame; iSplit; first done;
 rewrite (is_list_unfold _ (InjRV _)). iRight; iExists _, _, _; iFrame; eauto. }
+ { iNext; iExists _, (Some ℓ'); iFrame; iSplit; first done;
+ rewrite (is_list_unfold _ (Some _)). iExists _, _; iFrame; eauto. }
iModIntro.
wp_if.
by iApply "HΦ".
  iDestruct (is_list_unboxed with "Hlist") as "[>% Hlist]".
 wp_cas_fail.
+  wp_cas_fail.
+ { destruct v', v''; simpl; congruence. }
+ { destruct v''; left; done. }
iMod ("Hclose" with "[Hl Hlist]") as "_".
{ iNext; iExists _, _; by iFrame. }
iModIntro.
@@ 134,37 +138,36 @@ Section stacks.
iLöb as "IH".
wp_lam. wp_bind (Load _).
iInv N as (ℓ v') "(>% & Hl & Hlist)" "Hclose"; subst.
+ iDestruct (is_list_dup with "Hlist") as "[Hlist Hlist2]".
wp_load.
 iDestruct (is_list_disj with "Hlist") as "[Hlist Hdisj]".
iMod ("Hclose" with "[Hl Hlist]") as "_".
{ iNext; iExists _, _; by iFrame. }
iModIntro.
 iDestruct "Hdisj" as "[>  Heq]".
+ destruct v' as [l]; last first.
 wp_match.
iApply "HΦ"; by iLeft.
  iDestruct "Heq" as (l h t) "[> Hl]".
 wp_match. wp_bind (Load _).
+  wp_match. wp_bind (Load _).
iInv N as (ℓ' v') "(>% & Hl' & Hlist)" "Hclose". simplify_eq.
 iDestruct "Hl" as (q) "Hl".
+ iDestruct "Hlist2" as (???) "Hl".
wp_load.
iMod ("Hclose" with "[Hl' Hlist]") as "_".
{ iNext; iExists _, _; by iFrame. }
iModIntro.
wp_pures. wp_bind (CAS _ _ _).
iInv N as (ℓ'' v'') "(>% & Hl' & Hlist)" "Hclose". simplify_eq.
 destruct (decide (v'' = InjRV #l)) as [> ].
+ destruct (decide (v'' = (Some l))) as [> ].
* rewrite is_list_unfold.
 iDestruct "Hlist" as "[>%  H]"; first done.
 iDestruct "H" as (ℓ''' h' t') "(>% & Hl'' & HP & Hlist)"; simplify_eq.
+ iDestruct "Hlist" as (h' t') "(Hl'' & HP & Hlist)".
iDestruct "Hl''" as (q') "Hl''".
+ simpl.
wp_cas_suc.
 iDestruct (mapsto_agree with "Hl'' Hl") as "%"; simplify_eq.
+ iDestruct (mapsto_agree with "Hl'' Hl") as %[= < <%oloc_to_val_inj].
iMod ("Hclose" with "[Hl' Hlist]") as "_".
{ iNext; iExists ℓ'', _; by iFrame. }
iModIntro.
wp_pures.
 iApply ("HΦ" with "[HP]"); iRight; iExists h; by iFrame.
 * wp_cas_fail.
+ iApply ("HΦ" with "[HP]"); iRight; iExists _; by iFrame.
+ * wp_cas_fail. { destruct v''; simpl; congruence. }
iMod ("Hclose" with "[Hl' Hlist]") as "_".
{ iNext; iExists ℓ'', _; by iFrame. }
iModIntro.
diff git a/theories/concurrent_stacks/concurrent_stack2.v b/theories/concurrent_stacks/concurrent_stack2.v
index b916382..ae45ce8 100644
 a/theories/concurrent_stacks/concurrent_stack2.v
+++ b/theories/concurrent_stacks/concurrent_stack2.v
@@ 246,9 +246,19 @@ Section stack_works.
iIntros "H"; iDestruct "H" as (?) "[Hl Hl']"; iSplitL "Hl"; eauto.
Qed.
 Definition is_list_pre (P : val → iProp Σ) (F : val d> iProp Σ) :
 val d> iProp Σ := λ v,
 (v ≡ NONEV ∨ ∃ (l : loc) (h t : val), ⌜v ≡ SOMEV #l⌝ ∗ l ↦{} (h, t)%V ∗ P h ∗ ▷ F t)%I.
+ Definition oloc_to_val (ol: option loc) : val :=
+ match ol with
+  None => NONEV
+  Some loc => SOMEV (#loc)
+ end.
+ Local Instance oloc_to_val_inj : Inj (=) (=) oloc_to_val.
+ Proof. intros [][]; simpl; congruence. Qed.
+
+ Definition is_list_pre (P : val → iProp Σ) (F : option loc d> iProp Σ) :
+ option loc d> iProp Σ := λ v, match v with
+  None => True
+  Some l => ∃ (h : val) (t : option loc), l ↦{} (h, oloc_to_val t)%V ∗ P h ∗ ▷ F t
+ end%I.
Local Instance is_list_contr (P : val → iProp Σ) : Contractive (is_list_pre P).
Proof.
@@ 268,27 +278,21 @@ Section stack_works.
rewrite is_list_eq. apply (fixpoint_unfold (is_list_pre P)).
Qed.
 (* TODO: shouldn't have to explicitly return is_list *)
 Lemma is_list_unboxed (P : val → iProp Σ) v :
 is_list P v ∗ ⌜val_is_unboxed v⌝ ∗ is_list P v.
 Proof.
 iIntros "Hstack"; iSplit; last done;
 iDestruct (is_list_unfold with "Hstack") as "[>Hstack]";
 last iDestruct "Hstack" as (l h t) "(> & _)"; done.
 Qed.

 Lemma is_list_disj (P : val → iProp Σ) v :
 is_list P v ∗ is_list P v ∗ (⌜v ≡ NONEV⌝ ∨ ∃ (l : loc) h t, ⌜v ≡ SOMEV #l%V⌝ ∗ l ↦{} (h, t)%V).
+ Lemma is_list_dup (P : val → iProp Σ) v :
+ is_list P v ∗ is_list P v ∗ match v with
+  None => True
+  Some l => ∃ h t, l ↦{} (h, oloc_to_val t)%V
+ end.
Proof.
 iIntros "Hstack".
 iDestruct (is_list_unfold with "Hstack") as "[%Hstack]"; simplify_eq.
  rewrite is_list_unfold; iSplitR; [iLeft]; eauto.
  iDestruct "Hstack" as (l h t) "(% & Hl & Hlist)".
 iDestruct (partial_mapsto_duplicable with "Hl") as "[Hl1 Hl2]"; simplify_eq.
 rewrite (is_list_unfold _ (InjRV _)); iSplitR "Hl2"; iRight; iExists _, _, _; by iFrame.
+ iIntros "Hstack". iDestruct (is_list_unfold with "Hstack") as "Hstack".
+ destruct v as [l].
+  iDestruct "Hstack" as (h t) "(Hl & Hlist)".
+ iDestruct (partial_mapsto_duplicable with "Hl") as "[Hl1 Hl2]".
+ rewrite (is_list_unfold _ (Some _)); iSplitR "Hl2"; iExists _, _; by iFrame.
+  rewrite is_list_unfold; iSplitR; eauto.
Qed.
 Definition stack_inv P l := (∃ v, l ↦ v ∗ is_list P v)%I.
+ Definition stack_inv P l := (∃ v, l ↦ oloc_to_val v ∗ is_list P v)%I.
Definition is_stack P v :=
(∃ mailbox l, ⌜v = (mailbox, #l)%V⌝ ∗ is_mailbox Nmailbox P mailbox ∗ inv N (stack_inv P l))%I.
@@ 302,7 +306,7 @@ Section stack_works.
wp_apply mk_mailbox_works; first done.
iIntros (mailbox) "#Hmailbox".
iMod (inv_alloc N _ (stack_inv P l) with "[Hl]") as "#Hinv".
 { by iNext; iExists _; iFrame; rewrite is_list_unfold; iLeft. }
+ { iNext; iExists None; iFrame. rewrite is_list_unfold. done. }
wp_pures; iModIntro; iApply "Hpost"; iExists _, _; auto.
Qed.
@@ 325,16 +329,16 @@ Section stack_works.
wp_let. wp_alloc l' as "Hl'". wp_pures. wp_bind (CAS _ _ _).
iInv N as (list) "(Hl & Hlist)" "Hclose".
destruct (decide (v'' = list)) as [ > ].
 * iDestruct (is_list_unboxed with "Hlist") as "[>% Hlist]".
 wp_cas_suc.
+ * wp_cas_suc. { destruct list; left; done. }
iMod ("Hclose" with "[HP Hl Hl' Hlist]") as "_".
 { iNext; iExists (SOMEV _); iFrame.
 rewrite (is_list_unfold _ (InjRV _)). iRight; iExists _, _, _; iFrame; eauto. }
+ { iNext; iExists (Some _); iFrame.
+ rewrite (is_list_unfold _ (Some _)). iExists _, _; iFrame; eauto. }
iModIntro.
wp_if.
by iApply "HΦ".
 * iDestruct (is_list_unboxed with "Hlist") as "[>% Hlist]".
 wp_cas_fail.
+ * wp_cas_fail.
+ { destruct list, v''; simpl; congruence. }
+ { destruct list; left; done. }
iMod ("Hclose" with "[Hl Hlist]") as "_".
{ iNext; iExists _; by iFrame. }
iModIntro.
@@ 355,27 +359,25 @@ Section stack_works.
 wp_match. wp_bind (Load _).
iInv N as (list) "[Hl Hlist]" "Hclose".
wp_load.
 iDestruct (is_list_disj with "Hlist") as "[Hlist Hdisj]".
+ iDestruct (is_list_dup with "Hlist") as "[Hlist Hlist2]".
iMod ("Hclose" with "[Hl Hlist]") as "_".
{ iNext; iExists _; by iFrame. }
iModIntro.
 iDestruct "Hdisj" as "[>  Heq]".
+ destruct list as [list]; last first.
* wp_match.
iApply "HΦ"; by iLeft.
 * iDestruct "Heq" as (l' h t) "[> Hl']".
 wp_match. wp_bind (Load _).
+ * wp_match. wp_bind (Load _).
iInv N as (v') "[>Hl Hlist]" "Hclose".
 iDestruct "Hl'" as (q) "Hl'".
+ iDestruct "Hlist2" as (???) "Hl'".
wp_load.
iMod ("Hclose" with "[Hl Hlist]") as "_".
{ iNext; iExists _; by iFrame. }
iModIntro.
wp_let. wp_proj. wp_bind (CAS _ _ _). wp_pures.
iInv N as (v'') "[Hl Hlist]" "Hclose".
 destruct (decide (v'' = InjRV #l')) as [> ].
+ destruct (decide (v'' = Some list)) as [> ].
+ rewrite is_list_unfold.
 iDestruct "Hlist" as "[>%  H]"; first done.
 iDestruct "H" as (l'' h' t') "(>% & Hl'' & HP & Hlist)"; simplify_eq.
+ iDestruct "Hlist" as (h' t') "(Hl'' & HP & Hlist)".
iDestruct "Hl''" as (q') "Hl''".
wp_cas_suc.
iDestruct (mapsto_agree with "Hl'' Hl'") as "%"; simplify_eq.
@@ 383,8 +385,8 @@ Section stack_works.
{ iNext; iExists _; by iFrame. }
iModIntro.
wp_pures.
 iApply ("HΦ" with "[HP]"); iRight; iExists h; by iFrame.
 + wp_cas_fail.
+ iApply ("HΦ" with "[HP]"); iRight; iExists _; by iFrame.
+ + wp_cas_fail. { destruct v''; simpl; congruence. }
iMod ("Hclose" with "[Hl Hlist]") as "_".
{ iNext; iExists _; by iFrame. }
iModIntro.
diff git a/theories/concurrent_stacks/concurrent_stack3.v b/theories/concurrent_stacks/concurrent_stack3.v
index 33201c1..4b51618 100644
 a/theories/concurrent_stacks/concurrent_stack3.v
+++ b/theories/concurrent_stacks/concurrent_stack3.v
@@ 44,47 +44,51 @@ Section stack_works.
iApply (mapsto_agree with "H1 H2").
Qed.
+ Definition oloc_to_val (ol: option loc) : val :=
+ match ol with
+  None => NONEV
+  Some loc => SOMEV (#loc)
+ end.
+ Local Instance oloc_to_val_inj : Inj (=) (=) oloc_to_val.
+ Proof. intros [][]; simpl; congruence. Qed.
+
Fixpoint is_list xs v : iProp Σ :=
 (match xs with
  [] => ⌜v = NONEV⌝
  x :: xs => ∃ l (t : val), ⌜v = SOMEV #l%V⌝ ∗ l ↦{} (x, t)%V ∗ is_list xs t
+ (match xs, v with
+  [], None => True
+  x :: xs, Some l => ∃ t, l ↦{} (x, oloc_to_val t)%V ∗ is_list xs t
+  _, _ => False
end)%I.
 Lemma is_list_disj xs v :
 is_list xs v ∗ is_list xs v ∗ (⌜v = NONEV⌝ ∨ ∃ l (h t : val), ⌜v = SOMEV #l⌝ ∗ l ↦{} (h, t)%V).
+ Lemma is_list_dup xs v :
+ is_list xs v ∗ is_list xs v ∗ match v with
+  None => True
+  Some l => ∃ h t, l ↦{} (h, oloc_to_val t)%V
+ end.
Proof.
 destruct xs; auto.
 iIntros "H"; iDestruct "H" as (l t) "(> & Hl & Hstack)".
+ destruct xs, v; simpl; auto; first by iIntros "[]".
+ iIntros "H"; iDestruct "H" as (t) "(Hl & Hstack)".
iDestruct (partial_mapsto_duplicable with "Hl") as "[Hl1 Hl2]".
 iSplitR "Hl2"; first by (iExists _, _; iFrame). iRight; auto.
 Qed.

 Lemma is_list_unboxed xs v :
 is_list xs v ∗ ⌜val_is_unboxed v⌝ ∗ is_list xs v.
 Proof.
 iIntros "Hlist"; iDestruct (is_list_disj with "Hlist") as "[$ Heq]".
 iDestruct "Heq" as "[>  H]"; first done; by iDestruct "H" as (? ? ?) "[> ?]".
+ iSplitR "Hl2"; first by (iExists _; iFrame). by iExists _, _.
Qed.
Lemma is_list_empty xs :
 is_list xs (InjLV #()) ∗ ⌜xs = []⌝.
+ is_list xs None ∗ ⌜xs = []⌝.
Proof.
destruct xs; iIntros "Hstack"; auto.
 iDestruct "Hstack" as (? ?) "(% & H)"; discriminate.
Qed.
Lemma is_list_cons xs l h t :
l ↦{} (h, t)%V ∗
 is_list xs (InjRV #l) ∗
+ is_list xs (Some l) ∗
∃ ys, ⌜xs = h :: ys⌝.
Proof.
destruct xs; first by iIntros "? %".
 iIntros "Hl Hstack"; iDestruct "Hstack" as (l' t') "(% & Hl' & Hrest)"; simplify_eq.
+ iIntros "Hl Hstack"; iDestruct "Hstack" as (t') "(Hl' & Hrest)".
iDestruct (partial_mapsto_agree with "Hl Hl'") as "%"; simplify_eq; iExists _; auto.
Qed.
Definition stack_inv P l :=
 (∃ v xs, l ↦ v ∗ is_list xs v ∗ P xs)%I.
+ (∃ v xs, l ↦ oloc_to_val v ∗ is_list xs v ∗ P xs)%I.
Definition is_stack_pred P v :=
(∃ l, ⌜v = #l⌝ ∗ inv N (stack_inv P l))%I.
@@ 96,7 +100,7 @@ Section stack_works.
rewrite wp_fupd.
wp_lam. wp_alloc l as "Hl".
iMod (inv_alloc N _ (stack_inv P l) with "[Hl HP]") as "#Hinv".
 { by iNext; iExists _, []; iFrame. }
+ { iNext; iExists None, []; iFrame. }
iModIntro; iApply "HΦ"; iExists _; auto.
Qed.
@@ 116,16 +120,17 @@ Section stack_works.
iModIntro.
wp_let. wp_alloc l' as "Hl'". wp_pures. wp_bind (CAS _ _ _).
iInv N as (list' xs) "(Hl & Hlist & HP)" "Hclose".
 iDestruct (is_list_unboxed with "Hlist") as "[>% Hlist]".
destruct (decide (list = list')) as [ > ].
  wp_cas_suc.
+  wp_cas_suc. { destruct list'; left; done. }
iMod ("Hupd" with "HP") as "[HP HΨ]".
iMod ("Hclose" with "[Hl Hl' HP Hlist]") as "_".
 { iNext; iExists (SOMEV _), (v :: xs); iFrame; iExists _, _; iFrame; auto. }
+ { iNext; iExists (Some _), (v :: xs); iFrame; iExists _; iFrame; auto. }
iModIntro.
wp_if.
by iApply ("HΦ" with "HΨ").
 wp_cas_fail.
+ { destruct list, list'; simpl; congruence. }
+ { destruct list'; left; done. }
iMod ("Hclose" with "[Hl HP Hlist]").
{ iExists _, _; iFrame. }
iModIntro.
@@ 146,8 +151,8 @@ Section stack_works.
wp_lam. wp_bind (Load _).
iInv N as (v xs) "(Hl & Hlist & HP)" "Hclose".
wp_load.
 iDestruct (is_list_disj with "Hlist") as "[Hlist H]".
 iDestruct "H" as "[>  HSome]".
+ iDestruct (is_list_dup with "Hlist") as "[Hlist H]".
+ destruct v as [l']; last first.
 iDestruct (is_list_empty with "Hlist") as %>.
iDestruct "Hupd" as "[_ Hupdnil]".
iMod ("Hupdnil" with "HP") as "[HP HΨ]".
@@ 156,7 +161,7 @@ Section stack_works.
iModIntro.
wp_match.
iApply ("HΦ" with "HΨ").
  iDestruct "HSome" as (l' h t) "[> Hl']".
+  iDestruct "H" as (h t) "Hl'".
iMod ("Hclose" with "[Hlist Hl HP]") as "_".
{ iNext; iExists _, _; iFrame. }
iModIntro.
@@ 169,13 +174,13 @@ Section stack_works.
iModIntro.
wp_let. wp_proj. wp_bind (CAS _ _ _). wp_pures.
iInv N as (v' xs'') "(Hl & Hlist & HP)" "Hclose".
 destruct (decide (v' = (SOMEV #l'))) as [ > ].
+ destruct (decide (v' = (Some l'))) as [ > ].
* wp_cas_suc.
iDestruct (is_list_cons with "[Hl'] Hlist") as (ys) "%"; first by iExists _.
simplify_eq.
iDestruct "Hupd" as "[Hupdcons _]".
iMod ("Hupdcons" with "HP") as "[HP HΨ]".
 iDestruct "Hlist" as (l'' t') "(% & Hl'' & Hlist)"; simplify_eq.
+ iDestruct "Hlist" as (t') "(Hl'' & Hlist)".
iDestruct "Hl''" as (q') "Hl''".
iDestruct (mapsto_agree with "Hl' Hl''") as "%"; simplify_eq.
iMod ("Hclose" with "[Hlist Hl HP]") as "_".
@@ 183,7 +188,7 @@ Section stack_works.
iModIntro.
wp_pures.
iApply ("HΦ" with "HΨ").
 * wp_cas_fail.
+ * wp_cas_fail. { destruct v'; simpl; congruence. }
iMod ("Hclose" with "[Hlist Hl HP]") as "_".
{ iNext; iExists _, _; iFrame. }
iModIntro.
diff git a/theories/concurrent_stacks/concurrent_stack4.v b/theories/concurrent_stacks/concurrent_stack4.v
index 3265ef2..e406b58 100644
 a/theories/concurrent_stacks/concurrent_stack4.v
+++ b/theories/concurrent_stacks/concurrent_stack4.v
@@ 267,47 +267,51 @@ Section proofs.
iApply (mapsto_agree with "H1 H2").
Qed.
+ Definition oloc_to_val (ol: option loc) : val :=
+ match ol with
+  None => NONEV
+  Some loc => SOMEV (#loc)
+ end.
+ Local Instance oloc_to_val_inj : Inj (=) (=) oloc_to_val.
+ Proof. intros [][]; simpl; congruence. Qed.
+
Fixpoint is_list xs v : iProp Σ :=
 (match xs with
  [] => ⌜v = NONEV⌝
  x :: xs => ∃ l (t : val), ⌜v = SOMEV #l%V⌝ ∗ l ↦{} (x, t)%V ∗ is_list xs t
+ (match xs, v with
+  [], None => True
+  x :: xs, Some l => ∃ t, l ↦{} (x, oloc_to_val t)%V ∗ is_list xs t
+  _, _ => False
end)%I.
 Lemma is_list_disj xs v :
 is_list xs v ∗ is_list xs v ∗ (⌜v = NONEV⌝ ∨ ∃ l (h t : val), ⌜v = SOMEV #l⌝ ∗ l ↦{} (h, t)%V).
+ Lemma is_list_dup xs v :
+ is_list xs v ∗ is_list xs v ∗ match v with
+  None => True
+  Some l => ∃ h t, l ↦{} (h, oloc_to_val t)%V
+ end.
Proof.
 destruct xs; auto.
 iIntros "H"; iDestruct "H" as (l t) "(> & Hl & Hstack)".
+ destruct xs, v; simpl; auto; first by iIntros "[]".
+ iIntros "H"; iDestruct "H" as (t) "(Hl & Hstack)".
iDestruct (partial_mapsto_duplicable with "Hl") as "[Hl1 Hl2]".
 iSplitR "Hl2"; first by (iExists _, _; iFrame). iRight; auto.
 Qed.

 Lemma is_list_unboxed xs v :
 is_list xs v ∗ ⌜val_is_unboxed v⌝ ∗ is_list xs v.
 Proof.
 iIntros "Hlist"; iDestruct (is_list_disj with "Hlist") as "[$ Heq]".
 iDestruct "Heq" as "[>  H]"; first done; by iDestruct "H" as (? ? ?) "[> ?]".
+ iSplitR "Hl2"; first by (iExists _; iFrame). by iExists _, _.
Qed.
Lemma is_list_empty xs :
 is_list xs (InjLV #()) ∗ ⌜xs = []⌝.
+ is_list xs None ∗ ⌜xs = []⌝.
Proof.
destruct xs; iIntros "Hstack"; auto.
 iDestruct "Hstack" as (? ?) "(% & H)"; discriminate.
Qed.
Lemma is_list_cons xs l h t :
l ↦{} (h, t)%V ∗
 is_list xs (InjRV #l) ∗
+ is_list xs (Some l) ∗
∃ ys, ⌜xs = h :: ys⌝.
Proof.
destruct xs; first by iIntros "? %".
 iIntros "Hl Hstack"; iDestruct "Hstack" as (l' t') "(% & Hl' & Hrest)"; simplify_eq.
+ iIntros "Hl Hstack"; iDestruct "Hstack" as (t') "(Hl' & Hrest)".
iDestruct (partial_mapsto_agree with "Hl Hl'") as "%"; simplify_eq; iExists _; auto.
Qed.
Definition stack_inv P l :=
 (∃ v xs, l ↦ v ∗ is_list xs v ∗ P xs)%I.
+ (∃ v xs, l ↦ oloc_to_val v ∗ is_list xs v ∗ P xs)%I.
Definition is_stack_pred P v :=
(∃ mailbox l, ⌜v = (mailbox, #l)%V⌝ ∗ is_mailbox P mailbox ∗ inv Nstack (stack_inv P l))%I.
@@ 321,7 +325,7 @@ Section proofs.
wp_alloc l as "Hl".
wp_apply mk_mailbox_works ; first done. iIntros (v) "#Hmailbox".
iMod (inv_alloc Nstack _ (stack_inv P l) with "[Hl HP]") as "#Hinv".
 { by iNext; iExists _, []; iFrame. }
+ { by iNext; iExists None, []; iFrame. }
wp_pures. iModIntro; iApply "HΦ"; iExists _; auto.
Qed.
@@ 348,18 +352,19 @@ Section proofs.
iModIntro.
wp_let. wp_alloc l' as "Hl'". wp_pures. wp_bind (CAS _ _ _).
iInv Nstack as (list' xs) "(Hl & Hlist & HP)" "Hclose".
 iDestruct (is_list_unboxed with "Hlist") as "[>% Hlist]".
destruct (decide (list = list')) as [ > ].
 * wp_cas_suc.
+ * wp_cas_suc. { destruct list'; left; done. }
iMod (fupd_intro_mask' (⊤ ∖ ↑Nstack) inner_mask) as "Hupd'"; first solve_ndisj.
iMod ("Hupd" with "HP") as "[HP HΨ]".
iMod "Hupd'" as "_".
iMod ("Hclose" with "[Hl Hl' HP Hlist]") as "_".
 { iNext; iExists (SOMEV _), (v' :: xs); iFrame; iExists _, _; iFrame; auto. }
+ { iNext; iExists (Some _), (v' :: xs); iFrame; iExists _; iFrame; auto. }
iModIntro.
wp_if.
by iApply ("HΦ" with "HΨ").
* wp_cas_fail.
+ { destruct list, list'; simpl; congruence. }
+ { destruct list'; left; done. }
iMod ("Hclose" with "[Hl HP Hlist]").
{ iExists _, _; iFrame. }
iModIntro.
@@ 399,8 +404,8 @@ Section proofs.
 wp_match. wp_bind (Load _).
iInv Nstack as (v xs) "(Hl & Hlist & HP)" "Hclose".
wp_load.
 iDestruct (is_list_disj with "Hlist") as "[Hlist H]".
 iDestruct "H" as "[>  HSome]".
+ iDestruct (is_list_dup with "Hlist") as "[Hlist H]".
+ destruct v as [l']; last first.
* iDestruct (is_list_empty with "Hlist") as %>.
iMod (fupd_intro_mask' (⊤ ∖ ↑Nstack) inner_mask) as "Hupd'"; first solve_ndisj.
iMod ("Hupd" with "HP") as "[HP HΨ]".
@@ 410,7 +415,7 @@ Section proofs.
iModIntro.
wp_match.
iApply ("HΦ" with "HΨ").
 * iDestruct "HSome" as (l' h t) "[> Hl']".
+ * iDestruct "H" as (h t) "Hl'".
iMod ("Hclose" with "[Hlist Hl HP]") as "_".
{ iNext; iExists _, _; iFrame. }
iModIntro.
@@ 423,7 +428,7 @@ Section proofs.
iModIntro.
wp_pures. wp_bind (CAS _ _ _).
iInv Nstack as (v' xs'') "(Hl & Hlist & HP)" "Hclose".
 destruct (decide (v' = (SOMEV #l'))) as [ > ].
+ destruct (decide (v' = (Some l'))) as [ > ].
+ wp_cas_suc.
iDestruct (is_list_cons with "[Hl'] Hlist") as (ys) "%"; first by iExists _.
simplify_eq.
@@ 431,7 +436,7 @@ Section proofs.
iDestruct "Hupd" as "[Hupdcons _]".
iMod ("Hupdcons" with "HP") as "[HP HΨ]".
iMod "Hupd'" as "_".
 iDestruct "Hlist" as (l'' t') "(% & Hl'' & Hlist)"; simplify_eq.
+ iDestruct "Hlist" as (t') "(Hl'' & Hlist)".
iDestruct "Hl''" as (q') "Hl''".
iDestruct (mapsto_agree with "Hl' Hl''") as "%"; simplify_eq.
iMod ("Hclose" with "[Hlist Hl HP]") as "_".
@@ 439,7 +444,7 @@ Section proofs.
iModIntro.
wp_pures.
iApply ("HΦ" with "HΨ").
 + wp_cas_fail.
+ + wp_cas_fail. { destruct v'; simpl; congruence. }
iMod ("Hclose" with "[Hlist Hl HP]") as "_".
{ iNext; iExists _, _; iFrame. }
iModIntro.
diff git a/theories/hocap/fg_bag.v b/theories/hocap/fg_bag.v
index 916c489..b8c8c53 100644
 a/theories/hocap/fg_bag.v
+++ b/theories/hocap/fg_bag.v
@@ 49,49 +49,51 @@ Section proof.
Lemma rown_duplicate l v : rown l v ∗ rown l v ∗ rown l v.
Proof. iDestruct 1 as (q) "[Hl Hl']". iSplitL "Hl"; iExists _; eauto. Qed.
 Fixpoint is_list (hd : val) (xs : list val) : iProp Σ :=
 match xs with
  [] => ⌜hd = NONEV⌝%I
  x::xs => (∃ (l : loc) (tl : val),
 ⌜hd = SOMEV #l⌝ ∗ rown l (x, tl) ∗ is_list tl xs)%I
+ Definition oloc_to_val (ol: option loc) : val :=
+ match ol with
+  None => NONEV
+  Some loc => SOMEV (#loc)
end.
+ Local Instance oloc_to_val_inj : Inj (=) (=) oloc_to_val.
+ Proof. intros [][]; simpl; congruence. Qed.
 Lemma is_list_unboxed hd xs :
 is_list hd xs ∗ ⌜val_is_unboxed hd⌝.
 Proof.
 destruct xs.
  iIntros (>). done.
  iIntros "Hl". iDestruct "Hl" as (?? >) "_". done.
 Qed.
+ Fixpoint is_list (hd : option loc) (xs : list val) : iProp Σ :=
+ match xs, hd with
+  [], None => True
+  x::xs, Some l => ∃ (tl : option loc),
+ rown l (x, oloc_to_val tl) ∗ is_list tl xs
+  _, _ => False
+ end%I.
Lemma is_list_duplicate hd xs : is_list hd xs ∗ is_list hd xs ∗ is_list hd xs.
Proof.
iInduction xs as [  x xs ] "IH" forall (hd); simpl; eauto.
 iDestruct 1 as (l tl) "[% [Hro Htl]]"; simplify_eq.
+ destruct hd; last by auto.
+ iDestruct 1 as (tl) "[Hro Htl]".
rewrite rown_duplicate. iDestruct "Hro" as "[Hro Hro']".
iDestruct ("IH" with "Htl") as "[Htl Htl']".
 iSplitL "Hro Htl"; iExists _,_; iFrame; eauto.
+ iSplitL "Hro Htl"; iExists _; iFrame; eauto.
Qed.
Lemma is_list_agree hd xs ys : is_list hd xs ∗ is_list hd ys ∗ ⌜xs = ys⌝.
Proof.
iInduction xs as [  x xs ] "IH" forall (hd ys); simpl; eauto.
  iIntros "%"; subst.
 destruct ys; eauto. simpl.
 iDestruct 1 as (? ?) "[% ?]". simplify_eq.
  iDestruct 1 as (l tl) "(% & Hro & Hls)"; simplify_eq.
+  destruct hd; first by auto.
+ destruct ys; eauto.
+  destruct hd; last by auto.
destruct ys as [ y ys]; eauto. simpl.
 iDestruct 1 as (l' tl') "(% & Hro' & Hls')"; simplify_eq.
+ iDestruct 1 as (tl) "(Hro & Hls)".
+ iDestruct 1 as (tl') "(Hro' & Hls')".
iDestruct "Hro" as (q) "Hro".
iDestruct "Hro'" as (q') "Hro'".
 iDestruct (mapsto_agree l' q q' (PairV x tl) (PairV y tl')
+ iDestruct (mapsto_agree l q q' (PairV x (oloc_to_val tl)) (PairV y (oloc_to_val tl'))
with "Hro Hro'") as %?. simplify_eq/=.
iDestruct ("IH" with "Hls Hls'") as %>. done.
Qed.
Definition bag_inv (γb : gname) (b : loc) : iProp Σ :=
 (∃ (hd : val) (ls : list val),
 b ↦ hd ∗ is_list hd ls ∗ own γb ((1/2)%Qp, to_agree (list_to_set_disj ls)))%I.
+ (∃ (hd : option loc) (ls : list val),
+ b ↦ oloc_to_val hd ∗ is_list hd ls ∗ own γb ((1/2)%Qp, to_agree (list_to_set_disj ls)))%I.
Definition is_bag (γb : gname) (x : val) :=
(∃ (b : loc), ⌜x = #b⌝ ∗ inv N (bag_inv γb b))%I.
Definition bag_contents (γb : gname) (X : gmultiset val) : iProp Σ :=
@@ 134,7 +136,7 @@ Section proof.
wp_alloc r as "Hr".
iMod (own_alloc (1%Qp, to_agree ∅)) as (γb) "[Ha Hf]"; first done.
iMod (inv_alloc N _ (bag_inv γb r) with "[Ha Hr]") as "#Hinv".
 { iNext. iExists _,[]. simpl. iFrame. eauto. }
+ { iNext. iExists None,[]. simpl. iFrame. }
iModIntro. iApply "HΦ".
rewrite /is_bag /bag_contents. iFrame.
iExists _. by iFrame "Hinv".
@@ 162,15 +164,16 @@ Section proof.
wp_alloc n as "Hn".
wp_pures. wp_bind (CAS _ _ _).
iInv N as (o' ls) "[Ho [Hls >Hb]]" "Hcl".
 iPoseProof (is_list_unboxed with "Hls") as "#>%".
destruct (decide (o = o')) as [>?].
  wp_cas_suc.
+  wp_cas_suc. { destruct o'; left; done. }
iMod ("Hvs" with "[$Hb $HP]") as "[Hb HQ]".
iMod ("Hcl" with "[Ho Hn Hls Hb]") as "_".
 { iNext. iExists _,(v::ls). iFrame "Ho Hb".
 simpl. iExists _,_. iFrame. iSplit; eauto. by iExists 1%Qp. }
+ { iNext. iExists (Some _),(v::ls). iFrame "Ho Hb".
+ simpl. iExists _. iFrame. by iExists 1%Qp. }
iModIntro. wp_if_true. by iApply "HΦ".
 wp_cas_fail.
+ { destruct o, o'; simpl; congruence. }
+ { destruct o'; left; done. }
iMod ("Hcl" with "[Ho Hls Hb]") as "_".
{ iNext. iExists _,ls. by iFrame "Ho Hb". }
iModIntro. wp_if_false.
@@ 196,38 +199,38 @@ Section proof.
iInv N as (o ls) "[Ho [Hls >Hb]]" "Hcl".
wp_load.
destruct ls as [x ls]; simpl.
  iDestruct "Hls" as %>.
+  destruct o; first done.
iMod ("Hvs2" with "[$Hb $HP]") as "[Hb HQ]".
iMod ("Hcl" with "[Ho Hb]") as "_".
{ iNext. iExists _,[]. by iFrame. }
iModIntro. repeat wp_pure _.
by iApply "HΦ".
  iDestruct "Hls" as (hd tl) "(% & Hhd & Hls)"; simplify_eq/=.
+  destruct o as [hd]; last done.
+ iDestruct "Hls" as (tl) "(Hhd & Hls)"; simplify_eq/=.
rewrite rown_duplicate. iDestruct "Hhd" as "[Hhd Hhd']".
rewrite is_list_duplicate. iDestruct "Hls" as "[Hls Hls']".
iMod ("Hcl" with "[Ho Hb Hhd Hls]") as "_".
 { iNext. iExists _,(x::ls). simpl; iFrame; eauto.
 iExists _, _; eauto. by iFrame. }
+ { iNext. iExists (Some _),(x::ls). simpl; iFrame; eauto.
+ iExists _; eauto. by iFrame. }
iModIntro. repeat wp_pure _.
iDestruct "Hhd'" as (q) "Hhd".
wp_load. repeat wp_pure _.
wp_bind (CAS _ _ _).
iInv N as (o' ls') "[Ho [Hls >Hb]]" "Hcl".
 destruct (decide (o' = (InjRV #hd))) as [>?].
+ destruct (decide (o' = (Some hd))) as [>?].
+ wp_cas_suc.
(* The list is still the same *)
rewrite (is_list_duplicate tl). iDestruct "Hls'" as "[Hls' Htl]".
 iAssert (is_list (InjRV #hd) (x::ls)) with "[Hhd Hls']" as "Hls'".
 { simpl. iExists hd,tl. iFrame; iSplit; eauto.
 iExists q. iFrame. }
+ iAssert (is_list (Some hd) (x::ls)) with "[Hhd Hls']" as "Hls'".
+ { simpl. iExists tl. iFrame. iExists q. iFrame. }
iDestruct (is_list_agree with "Hls Hls'") as %?. simplify_eq.
iClear "Hls'".
 iDestruct "Hls" as (hd' tl') "(% & Hro' & Htl')". simplify_eq.
+ iDestruct "Hls" as (tl') "(Hro' & Htl')".
iMod ("Hvs1" with "[$Hb $HP]") as "[Hb HQ]".
iMod ("Hcl" with "[Ho Htl Hb]") as "_".
{ iNext. iExists _,ls. by iFrame "Ho Hb". }
iModIntro. wp_pures. by iApply "HΦ".
 + wp_cas_fail.
+ + wp_cas_fail. { destruct o'; simpl; congruence. }
iMod ("Hcl" with "[Ho Hls Hb]") as "_".
{ iNext. iExists _,ls'. by iFrame "Ho Hb". }
iModIntro. wp_if_false.
diff git a/theories/logatom/elimination_stack/stack.v b/theories/logatom/elimination_stack/stack.v
index 7b7aec1..5b82418 100644
 a/theories/logatom/elimination_stack/stack.v
+++ b/theories/logatom/elimination_stack/stack.v
@@ 106,6 +106,10 @@ Section stack.
Local Instance stack_elem_to_val_inj : Inj (=) (=) stack_elem_to_val.
Proof. rewrite /Inj /stack_elem_to_val=>??. repeat case_match; congruence. Qed.
+ Lemma stack_elem_to_val_for_compare rep :
+ val_for_compare (stack_elem_to_val rep) = stack_elem_to_val rep.
+ Proof. destruct rep; done. Qed.
+
Fixpoint list_inv (l : list val) (rep : option loc) : iProp :=
match l with
 nil => ⌜rep = None⌝
@@ 203,7 +207,7 @@ Section stack.
awp_apply cas_spec; [by destruct stack_rep].
iInv stackN as (stack_rep' offer_rep l) "(>Hs● & >H↦ & Hlist & Hoffer)".
iAaccIntro with "H↦"; first by eauto 10 with iFrame.
 iIntros "H↦".
+ iIntros "H↦". rewrite !stack_elem_to_val_for_compare.
destruct (decide (stack_elem_to_val stack_rep' = stack_elem_to_val stack_rep)) as
[>%stack_elem_to_val_inj_].
 (* The CAS succeeded. Update everything accordingly. *)
@@ 299,6 +303,7 @@ Section stack.
iInv stackN as (stack_rep offer_rep l) "(>Hs● & >H↦ & Hlist & Hrem)".
iAaccIntro with "H↦"; first by eauto 10 with iFrame.
iIntros "H↦". change (InjRV #tail) with (stack_elem_to_val (Some tail)).
+ rewrite !stack_elem_to_val_for_compare.
destruct (decide (stack_elem_to_val stack_rep = stack_elem_to_val (Some tail))) as
[>%stack_elem_to_val_inj_].
+ (* CAS succeeded! It must still be the same head element in the list,
@@ 308,8 +313,7 @@ Section stack.
%[>%Excl_included%leibniz_equiv _]%auth_both_valid.
destruct l as [v' l]; simpl.
{ (* Contradiction. *) iDestruct "Hlist" as ">%". done. }
 iDestruct "Hlist" as (tail' q' rep') "[>Heq [>Htail' Hlist]]".
 iDestruct "Heq" as %[= <].
+ iDestruct "Hlist" as (tail' q' rep') "[>% [>Htail' Hlist]]". simplify_eq.
iDestruct (mapsto_agree with "Htail Htail'") as %[= < <%stack_elem_to_val_inj].
iMod (own_update_2 with "Hs● Hl'") as "[Hs● Hl']".
{ eapply auth_update, option_local_update, (exclusive_local_update _ (Excl _)). done. }
@@ 334,7 +338,7 @@ Section stack.
iDestruct "Hoff" as (Poff Qoff γo) "[#Hoinv #AUoff]".
iInv offerN as (offer_st) "[>Hoff↦ Hoff]".
iAaccIntro with "Hoff↦"; first by eauto 10 with iFrame.
 iIntros "Hoff↦".
+ iIntros "Hoff↦". simpl.
destruct (decide (#(offer_state_rep offer_st) = #0)) as [Heq_]; last first.
{ (* CAS failed, we don't do a thing. *)
iSplitR "AU"; first by eauto 10 with iFrame.
diff git a/theories/logatom/treiber2.v b/theories/logatom/treiber2.v
index 05ee4dc..25d1181 100644
 a/theories/logatom/treiber2.v
+++ b/theories/logatom/treiber2.v
@@ 266,7 +266,7 @@ Proof.
(* We now reason by case on the success/failure of the CAS. *)
destruct (decide (u = w)) as [[= >]NE].
 (* The CAS succeeded. *)
 wp_cas_suc. { case w; done. (* Administrative stuff. *) }
+ wp_cas_suc. { case w; left; done. (* Administrative stuff. *) }
(* This was the linearization point. We access the preconditon. *)
iMod "AU" as (zs) "[Hγ◯ [_ HClose]]".
(* Use agreement on ressource [γ] to learn [zs = ys]. *)
@@ 280,7 +280,7 @@ Proof.
(* And conclude the proof easily, after some computation steps. *)
wp_if. iExact "H".
 (* The CAS failed. *)
 wp_cas_fail. { eapply not_inj. done. }
+ wp_cas_fail. { case u, w; simpl; congruence. }
{ case u, w; simpl; eauto. (* Administrative stuff. *) }
(* We can eliminate the modality. *)
iModIntro. iSplitL "Hγ● Hl HPhys"; first by eauto 10 with iFrame.
@@ 324,7 +324,7 @@ Proof.
(* We reason by case on the success/failure of the CAS. *)
destruct (decide (u = Some w)) as [[= >]Hx].
* (* The CAS succeeded, so this is the linearization point. *)
 wp_cas_suc; first done.
+ wp_cas_suc.
(* The list [ys] must be nonempty, otherwise the proof is trivial. *)
destruct ys; first done.
(* We access the precondition, prior to performing an update. *)
diff git a/theories/logrel_heaplang/ltyping.v b/theories/logrel_heaplang/ltyping.v
index 4e35302..d260fe9 100644
 a/theories/logrel_heaplang/ltyping.v
+++ b/theories/logrel_heaplang/ltyping.v
@@ 383,9 +383,6 @@ Section types_properties.
wp_apply (wp_wand with "(H2 [//])"); iIntros (w2) "HA2".
iDestruct (lty_unboxed with "HA2") as %?.
wp_apply (wp_wand with "(H1 [//])"); iIntros (w1); iDestruct 1 as (l >) "#?".
 iInv (tyN.@l) as (v) "[>Hl Hv]".
 destruct (decide (v = w2)) as [>].
  wp_cas_suc. eauto 10.
  wp_cas_fail. eauto 10.
+ iInv (tyN.@l) as (v) "[>Hl Hv]". wp_cas as ??; eauto 10.
Qed.
End types_properties.
diff git a/theories/spanning_tree/spanning.v b/theories/spanning_tree/spanning.v
index 661cc59..98a7f21 100644
 a/theories/spanning_tree/spanning.v
+++ b/theories/spanning_tree/spanning.v
@@ 75,7 +75,7 @@ Section Helpers.
rewrite Hil2' in Hil2; inversion Hil2; subst.
iDestruct (auth_own_graph_valid with "Hi1") as %Hvl.
destruct u as [[] uch].
  wp_cas_fail; first done.
+  wp_cas_fail.
iDestruct (graph_close with "[Hi3 Hil3 Hil4]") as "Hi3";
eauto.
{ iFrame. iExists _; eauto. iSplitR; eauto. by iExists _; iFrame. }
@@ 85,7 +85,7 @@ Section Helpers.
{ iNext. unfold graph_inv at 2. iExists _; iFrame; auto. }
iModIntro. iFrame. iRight; by iFrame.
 (* CAS succeeds *)
 wp_cas_suc; first done.
+ wp_cas_suc.
iMod (mark_graph _ _ x uch with "[Hi1 Hx]") as "[Hi1 Hx]"; try by iFrame.
{ apply (proj1 (not_elem_of_dom (D := gset loc) G' x)).
intros Hid. eapply in_dom_of_graph in Hid; eauto; tauto. }

2.26.2