Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
E
examples
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
examples
Commits
d579dc8d
Commit
d579dc8d
authored
Jun 19, 2019
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bump Iris for comparison changes
parent
06edc222
Pipeline
#17790
passed with stage
in 17 minutes and 34 seconds
Changes
10
Pipelines
2
Hide whitespace changes
Inline
Sidebyside
Showing
10 changed files
with
209 additions
and
190 deletions
+209
190
opam
opam
+1
1
concurrent_stack1.v
theories/concurrent_stacks/concurrent_stack1.v
+44
41
concurrent_stack2.v
theories/concurrent_stacks/concurrent_stack2.v
+40
38
concurrent_stack3.v
theories/concurrent_stacks/concurrent_stack3.v
+35
30
concurrent_stack4.v
theories/concurrent_stacks/concurrent_stack4.v
+35
30
fg_bag.v
theories/hocap/fg_bag.v
+40
37
stack.v
theories/logatom/elimination_stack/stack.v
+8
4
treiber2.v
theories/logatom/treiber2.v
+3
3
ltyping.v
theories/logrel_heaplang/ltyping.v
+1
4
spanning.v
theories/spanning_tree/spanning.v
+2
2
No files found.
opam
View file @
d579dc8d
...
...
@@ 9,6 +9,6 @@ build: [make "j%{jobs}%"]
install: [make "install"]
remove: ["rm" "rf" "%{lib}%/coq/usercontrib/iris_examples"]
depends: [
"coqiris" { (= "dev.20190618.
2.e039d7c7
")  (= "dev") }
"coqiris" { (= "dev.20190618.
8.72595700
")  (= "dev") }
"coqautosubst" { = "dev.coq86" }
]
theories/concurrent_stacks/concurrent_stack1.v
View file @
d579dc8d
...
...
@@ 36,9 +36,19 @@ Section stacks.
iIntros
"H"
;
iDestruct
"H"
as
(?)
"[Hl Hl']"
;
iSplitL
"Hl"
;
eauto
.
Qed
.
Definition
is_list_pre
(
P
:
val
→
iProp
Σ
)
(
F
:
val

d
>
iProp
Σ
)
:
val

d
>
iProp
Σ
:=
λ
v
,
(
v
≡
NONEV
∨
∃
(
l
:
loc
)
(
h
t
:
val
),
⌜
v
≡
SOMEV
#
l
⌝
∗
l
↦
{}
(
h
,
t
)%
V
∗
P
h
∗
▷
F
t
)%
I
.
Definition
oloc_to_val
(
ol
:
option
loc
)
:
val
:=
match
ol
with

None
=>
NONEV

Some
loc
=>
SOMEV
(#
loc
)
end
.
Local
Instance
oloc_to_val_inj
:
Inj
(=)
(=)
oloc_to_val
.
Proof
.
intros
[][];
simpl
;
congruence
.
Qed
.
Definition
is_list_pre
(
P
:
val
→
iProp
Σ
)
(
F
:
option
loc

d
>
iProp
Σ
)
:
option
loc

d
>
iProp
Σ
:=
λ
v
,
match
v
with

None
=>
True

Some
l
=>
∃
(
h
:
val
)
(
t
:
option
loc
),
l
↦
{}
(
h
,
oloc_to_val
t
)%
V
∗
P
h
∗
▷
F
t
end
%
I
.
Local
Instance
is_list_contr
(
P
:
val
→
iProp
Σ
)
:
Contractive
(
is_list_pre
P
).
Proof
.
...
...
@@ 58,28 +68,22 @@ Section stacks.
rewrite
is_list_eq
.
apply
(
fixpoint_unfold
(
is_list_pre
P
)).
Qed
.
(* TODO: shouldn't have to explicitly return is_list *)
Lemma
is_list_unboxed
(
P
:
val
→
iProp
Σ
)
v
:
is_list
P
v

∗
⌜
val_is_unboxed
v
⌝
∗
is_list
P
v
.
Proof
.
iIntros
"Hstack"
;
iSplit
;
last
done
;
iDestruct
(
is_list_unfold
with
"Hstack"
)
as
"[>Hstack]"
;
last
iDestruct
"Hstack"
as
(
l
h
t
)
"(> & _)"
;
done
.
Qed
.
Lemma
is_list_disj
(
P
:
val
→
iProp
Σ
)
v
:
is_list
P
v

∗
is_list
P
v
∗
(
⌜
v
≡
NONEV
⌝
∨
∃
(
l
:
loc
)
h
t
,
⌜
v
≡
SOMEV
#
l
%
V
⌝
∗
l
↦
{}
(
h
,
t
)%
V
).
Lemma
is_list_dup
(
P
:
val
→
iProp
Σ
)
v
:
is_list
P
v

∗
is_list
P
v
∗
match
v
with

None
=>
True

Some
l
=>
∃
h
t
,
l
↦
{}
(
h
,
oloc_to_val
t
)%
V
end
.
Proof
.
iIntros
"Hstack"
.
iDestruct
(
is_list_unfold
with
"Hstack"
)
as
"[%Hstack]"
;
simplify_eq
.

rewrite
is_list_unfold
;
iSplitR
;
[
iLeft
];
eauto
.

iDestruct
"Hstack"
as
(
l
h
t
)
"(% & Hl & Hlist)
"
.
iDestruct
(
partial_mapsto_duplicable
with
"Hl"
)
as
"[Hl1 Hl2]"
;
simplify_eq
.
rewrite
(
is_list_unfold
_
(
InjRV
_));
iSplitR
"Hl2"
;
iRight
;
iExists
_,
_,
_;
by
iFrame
.
iIntros
"Hstack"
.
iDestruct
(
is_list_unfold
with
"Hstack"
)
as
"Hstack"
.
destruct
v
as
[
l
]
.

iDestruct
"Hstack"
as
(
h
t
)
"(Hl & Hlist)"
.
iDestruct
(
partial_mapsto_duplicable
with
"Hl"
)
as
"[Hl1 Hl2]
"
.
rewrite
(
is_list_unfold
_
(
Some
_));
iSplitR
"Hl2"
;
iExists
_,
_;
by
iFrame
.

rewrite
is_list_unfold
;
iSplitR
;
eauto
.
Qed
.
Definition
stack_inv
P
v
:=
(
∃
l
v'
,
⌜
v
=
#
l
⌝
∗
l
↦
v'
∗
is_list
P
v
'
)%
I
.
(
∃
l
ol'
,
⌜
v
=
#
l
⌝
∗
l
↦
oloc_to_val
ol'
∗
is_list
P
ol
'
)%
I
.
Definition
is_stack
(
P
:
val
→
iProp
Σ
)
v
:=
inv
N
(
stack_inv
P
v
).
...
...
@@ 92,8 +96,8 @@ Section stacks.
wp_lam
.
wp_alloc
ℓ
as
"Hl"
.
iMod
(
inv_alloc
N
⊤
(
stack_inv
P
#
ℓ
)
with
"[Hl]"
)
as
"Hinv"
.
{
iNext
;
iExists
ℓ
,
N
ONEV
;
iFrame
;
by
iSplit
;
last
(
iApply
is_list_unfold
;
iLeft
).
}
{
iNext
;
iExists
ℓ
,
N
one
;
iFrame
;
by
iSplit
;
last
(
iApply
is_list_unfold
).
}
by
iApply
"Hpost"
.
Qed
.
...
...
@@ 109,17 +113,17 @@ Section stacks.
{
iNext
;
iExists
_,
_;
by
iFrame
.
}
iModIntro
.
wp_let
.
wp_alloc
ℓ
'
as
"Hl'"
.
wp_pures
.
wp_bind
(
CAS
_
_
_).
iInv
N
as
(
ℓ
''
v''
)
"(>% & >Hl & Hlist)"
"Hclose"
;
simplify_eq
.
destruct
(
decide
(
v'
=
v''
))
as
[
>
].

iDestruct
(
is_list_unboxed
with
"Hlist"
)
as
"[>% Hlist]"
.
wp_cas_suc
.
destruct
(
decide
(
v'
=
v''
))
as
[>
Hne
].

wp_cas_suc
.
{
destruct
v''
;
left
;
done
.
}
iMod
(
"Hclose"
with
"[HP Hl Hl' Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_,
(
InjRV
#
ℓ
'
);
iFrame
;
iSplit
;
first
done
;
rewrite
(
is_list_unfold
_
(
InjRV
_)).
iRight
;
iExists
_,
_,
_;
iFrame
;
eauto
.
}
{
iNext
;
iExists
_,
(
Some
ℓ
'
);
iFrame
;
iSplit
;
first
done
;
rewrite
(
is_list_unfold
_
(
Some
_)).
iExists
_,
_;
iFrame
;
eauto
.
}
iModIntro
.
wp_if
.
by
iApply
"HΦ"
.

iDestruct
(
is_list_unboxed
with
"Hlist"
)
as
"[>% Hlist]"
.
wp_cas_fail
.

wp_cas_fail
.
{
destruct
v'
,
v''
;
simpl
;
congruence
.
}
{
destruct
v''
;
left
;
done
.
}
iMod
(
"Hclose"
with
"[Hl Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
by
iFrame
.
}
iModIntro
.
...
...
@@ 134,37 +138,36 @@ Section stacks.
iL
ö
b
as
"IH"
.
wp_lam
.
wp_bind
(
Load
_).
iInv
N
as
(
ℓ
v'
)
"(>% & Hl & Hlist)"
"Hclose"
;
subst
.
iDestruct
(
is_list_dup
with
"Hlist"
)
as
"[Hlist Hlist2]"
.
wp_load
.
iDestruct
(
is_list_disj
with
"Hlist"
)
as
"[Hlist Hdisj]"
.
iMod
(
"Hclose"
with
"[Hl Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
by
iFrame
.
}
iModIntro
.
iDestruct
"Hdisj"
as
"[>  Heq]"
.
destruct
v'
as
[
l
];
last
first
.

wp_match
.
iApply
"HΦ"
;
by
iLeft
.

iDestruct
"Heq"
as
(
l
h
t
)
"[> Hl]"
.
wp_match
.
wp_bind
(
Load
_).

wp_match
.
wp_bind
(
Load
_).
iInv
N
as
(
ℓ
'
v'
)
"(>% & Hl' & Hlist)"
"Hclose"
.
simplify_eq
.
iDestruct
"Hl
"
as
(
q
)
"Hl"
.
iDestruct
"Hl
ist2"
as
(???
)
"Hl"
.
wp_load
.
iMod
(
"Hclose"
with
"[Hl' Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
by
iFrame
.
}
iModIntro
.
wp_pures
.
wp_bind
(
CAS
_
_
_).
iInv
N
as
(
ℓ
''
v''
)
"(>% & Hl' & Hlist)"
"Hclose"
.
simplify_eq
.
destruct
(
decide
(
v''
=
InjRV
#
l
))
as
[>
].
destruct
(
decide
(
v''
=
(
Some
l
)
))
as
[>
].
*
rewrite
is_list_unfold
.
iDestruct
"Hlist"
as
"[>%  H]"
;
first
done
.
iDestruct
"H"
as
(
ℓ
'''
h'
t'
)
"(>% & Hl'' & HP & Hlist)"
;
simplify_eq
.
iDestruct
"Hlist"
as
(
h'
t'
)
"(Hl'' & HP & Hlist)"
.
iDestruct
"Hl''"
as
(
q'
)
"Hl''"
.
simpl
.
wp_cas_suc
.
iDestruct
(
mapsto_agree
with
"Hl'' Hl"
)
as
"%"
;
simplify_eq
.
iDestruct
(
mapsto_agree
with
"Hl'' Hl"
)
as
%[=
<
<%
oloc_to_val_inj
]
.
iMod
(
"Hclose"
with
"[Hl' Hlist]"
)
as
"_"
.
{
iNext
;
iExists
ℓ
''
,
_;
by
iFrame
.
}
iModIntro
.
wp_pures
.
iApply
(
"HΦ"
with
"[HP]"
);
iRight
;
iExists
h
;
by
iFrame
.
*
wp_cas_fail
.
iApply
(
"HΦ"
with
"[HP]"
);
iRight
;
iExists
_
;
by
iFrame
.
*
wp_cas_fail
.
{
destruct
v''
;
simpl
;
congruence
.
}
iMod
(
"Hclose"
with
"[Hl' Hlist]"
)
as
"_"
.
{
iNext
;
iExists
ℓ
''
,
_;
by
iFrame
.
}
iModIntro
.
...
...
theories/concurrent_stacks/concurrent_stack2.v
View file @
d579dc8d
...
...
@@ 246,9 +246,19 @@ Section stack_works.
iIntros
"H"
;
iDestruct
"H"
as
(?)
"[Hl Hl']"
;
iSplitL
"Hl"
;
eauto
.
Qed
.
Definition
is_list_pre
(
P
:
val
→
iProp
Σ
)
(
F
:
val

d
>
iProp
Σ
)
:
val

d
>
iProp
Σ
:=
λ
v
,
(
v
≡
NONEV
∨
∃
(
l
:
loc
)
(
h
t
:
val
),
⌜
v
≡
SOMEV
#
l
⌝
∗
l
↦
{}
(
h
,
t
)%
V
∗
P
h
∗
▷
F
t
)%
I
.
Definition
oloc_to_val
(
ol
:
option
loc
)
:
val
:=
match
ol
with

None
=>
NONEV

Some
loc
=>
SOMEV
(#
loc
)
end
.
Local
Instance
oloc_to_val_inj
:
Inj
(=)
(=)
oloc_to_val
.
Proof
.
intros
[][];
simpl
;
congruence
.
Qed
.
Definition
is_list_pre
(
P
:
val
→
iProp
Σ
)
(
F
:
option
loc

d
>
iProp
Σ
)
:
option
loc

d
>
iProp
Σ
:=
λ
v
,
match
v
with

None
=>
True

Some
l
=>
∃
(
h
:
val
)
(
t
:
option
loc
),
l
↦
{}
(
h
,
oloc_to_val
t
)%
V
∗
P
h
∗
▷
F
t
end
%
I
.
Local
Instance
is_list_contr
(
P
:
val
→
iProp
Σ
)
:
Contractive
(
is_list_pre
P
).
Proof
.
...
...
@@ 268,27 +278,21 @@ Section stack_works.
rewrite
is_list_eq
.
apply
(
fixpoint_unfold
(
is_list_pre
P
)).
Qed
.
(* TODO: shouldn't have to explicitly return is_list *)
Lemma
is_list_unboxed
(
P
:
val
→
iProp
Σ
)
v
:
is_list
P
v

∗
⌜
val_is_unboxed
v
⌝
∗
is_list
P
v
.
Proof
.
iIntros
"Hstack"
;
iSplit
;
last
done
;
iDestruct
(
is_list_unfold
with
"Hstack"
)
as
"[>Hstack]"
;
last
iDestruct
"Hstack"
as
(
l
h
t
)
"(> & _)"
;
done
.
Qed
.
Lemma
is_list_disj
(
P
:
val
→
iProp
Σ
)
v
:
is_list
P
v

∗
is_list
P
v
∗
(
⌜
v
≡
NONEV
⌝
∨
∃
(
l
:
loc
)
h
t
,
⌜
v
≡
SOMEV
#
l
%
V
⌝
∗
l
↦
{}
(
h
,
t
)%
V
).
Lemma
is_list_dup
(
P
:
val
→
iProp
Σ
)
v
:
is_list
P
v

∗
is_list
P
v
∗
match
v
with

None
=>
True

Some
l
=>
∃
h
t
,
l
↦
{}
(
h
,
oloc_to_val
t
)%
V
end
.
Proof
.
iIntros
"Hstack"
.
iDestruct
(
is_list_unfold
with
"Hstack"
)
as
"[%Hstack]"
;
simplify_eq
.

rewrite
is_list_unfold
;
iSplitR
;
[
iLeft
];
eauto
.

iDestruct
"Hstack"
as
(
l
h
t
)
"(% & Hl & Hlist)
"
.
iDestruct
(
partial_mapsto_duplicable
with
"Hl"
)
as
"[Hl1 Hl2]"
;
simplify_eq
.
rewrite
(
is_list_unfold
_
(
InjRV
_));
iSplitR
"Hl2"
;
iRight
;
iExists
_,
_,
_;
by
iFrame
.
iIntros
"Hstack"
.
iDestruct
(
is_list_unfold
with
"Hstack"
)
as
"Hstack"
.
destruct
v
as
[
l
]
.

iDestruct
"Hstack"
as
(
h
t
)
"(Hl & Hlist)"
.
iDestruct
(
partial_mapsto_duplicable
with
"Hl"
)
as
"[Hl1 Hl2]
"
.
rewrite
(
is_list_unfold
_
(
Some
_));
iSplitR
"Hl2"
;
iExists
_,
_;
by
iFrame
.

rewrite
is_list_unfold
;
iSplitR
;
eauto
.
Qed
.
Definition
stack_inv
P
l
:=
(
∃
v
,
l
↦
v
∗
is_list
P
v
)%
I
.
Definition
stack_inv
P
l
:=
(
∃
v
,
l
↦
oloc_to_val
v
∗
is_list
P
v
)%
I
.
Definition
is_stack
P
v
:=
(
∃
mailbox
l
,
⌜
v
=
(
mailbox
,
#
l
)%
V
⌝
∗
is_mailbox
Nmailbox
P
mailbox
∗
inv
N
(
stack_inv
P
l
))%
I
.
...
...
@@ 302,7 +306,7 @@ Section stack_works.
wp_apply
mk_mailbox_works
;
first
done
.
iIntros
(
mailbox
)
"#Hmailbox"
.
iMod
(
inv_alloc
N
_
(
stack_inv
P
l
)
with
"[Hl]"
)
as
"#Hinv"
.
{
by
iNext
;
iExists
_;
iFrame
;
rewrite
is_list_unfold
;
iLeft
.
}
{
iNext
;
iExists
None
;
iFrame
.
rewrite
is_list_unfold
.
done
.
}
wp_pures
;
iModIntro
;
iApply
"Hpost"
;
iExists
_,
_;
auto
.
Qed
.
...
...
@@ 325,16 +329,16 @@ Section stack_works.
wp_let
.
wp_alloc
l'
as
"Hl'"
.
wp_pures
.
wp_bind
(
CAS
_
_
_).
iInv
N
as
(
list
)
"(Hl & Hlist)"
"Hclose"
.
destruct
(
decide
(
v''
=
list
))
as
[
>
].
*
iDestruct
(
is_list_unboxed
with
"Hlist"
)
as
"[>% Hlist]"
.
wp_cas_suc
.
*
wp_cas_suc
.
{
destruct
list
;
left
;
done
.
}
iMod
(
"Hclose"
with
"[HP Hl Hl' Hlist]"
)
as
"_"
.
{
iNext
;
iExists
(
S
OMEV
_);
iFrame
.
rewrite
(
is_list_unfold
_
(
InjRV
_)).
iRight
;
iExists
_,
_,
_;
iFrame
;
eauto
.
}
{
iNext
;
iExists
(
S
ome
_);
iFrame
.
rewrite
(
is_list_unfold
_
(
Some
_)).
iExists
_,
_;
iFrame
;
eauto
.
}
iModIntro
.
wp_if
.
by
iApply
"HΦ"
.
*
iDestruct
(
is_list_unboxed
with
"Hlist"
)
as
"[>% Hlist]"
.
wp_cas_fail
.
*
wp_cas_fail
.
{
destruct
list
,
v''
;
simpl
;
congruence
.
}
{
destruct
list
;
left
;
done
.
}
iMod
(
"Hclose"
with
"[Hl Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_;
by
iFrame
.
}
iModIntro
.
...
...
@@ 355,27 +359,25 @@ Section stack_works.

wp_match
.
wp_bind
(
Load
_).
iInv
N
as
(
list
)
"[Hl Hlist]"
"Hclose"
.
wp_load
.
iDestruct
(
is_list_d
isj
with
"Hlist"
)
as
"[Hlist Hdisj
]"
.
iDestruct
(
is_list_d
up
with
"Hlist"
)
as
"[Hlist Hlist2
]"
.
iMod
(
"Hclose"
with
"[Hl Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_;
by
iFrame
.
}
iModIntro
.
iDestruct
"Hdisj"
as
"[>  Heq]"
.
destruct
list
as
[
list
];
last
first
.
*
wp_match
.
iApply
"HΦ"
;
by
iLeft
.
*
iDestruct
"Heq"
as
(
l'
h
t
)
"[> Hl']"
.
wp_match
.
wp_bind
(
Load
_).
*
wp_match
.
wp_bind
(
Load
_).
iInv
N
as
(
v'
)
"[>Hl Hlist]"
"Hclose"
.
iDestruct
"Hl
'"
as
(
q
)
"Hl'"
.
iDestruct
"Hl
ist2"
as
(???
)
"Hl'"
.
wp_load
.
iMod
(
"Hclose"
with
"[Hl Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_;
by
iFrame
.
}
iModIntro
.
wp_let
.
wp_proj
.
wp_bind
(
CAS
_
_
_).
wp_pures
.
iInv
N
as
(
v''
)
"[Hl Hlist]"
"Hclose"
.
destruct
(
decide
(
v''
=
InjRV
#
l'
))
as
[>
].
destruct
(
decide
(
v''
=
Some
list
))
as
[>
].
+
rewrite
is_list_unfold
.
iDestruct
"Hlist"
as
"[>%  H]"
;
first
done
.
iDestruct
"H"
as
(
l''
h'
t'
)
"(>% & Hl'' & HP & Hlist)"
;
simplify_eq
.
iDestruct
"Hlist"
as
(
h'
t'
)
"(Hl'' & HP & Hlist)"
.
iDestruct
"Hl''"
as
(
q'
)
"Hl''"
.
wp_cas_suc
.
iDestruct
(
mapsto_agree
with
"Hl'' Hl'"
)
as
"%"
;
simplify_eq
.
...
...
@@ 383,8 +385,8 @@ Section stack_works.
{
iNext
;
iExists
_;
by
iFrame
.
}
iModIntro
.
wp_pures
.
iApply
(
"HΦ"
with
"[HP]"
);
iRight
;
iExists
h
;
by
iFrame
.
+
wp_cas_fail
.
iApply
(
"HΦ"
with
"[HP]"
);
iRight
;
iExists
_
;
by
iFrame
.
+
wp_cas_fail
.
{
destruct
v''
;
simpl
;
congruence
.
}
iMod
(
"Hclose"
with
"[Hl Hlist]"
)
as
"_"
.
{
iNext
;
iExists
_;
by
iFrame
.
}
iModIntro
.
...
...
theories/concurrent_stacks/concurrent_stack3.v
View file @
d579dc8d
...
...
@@ 44,47 +44,51 @@ Section stack_works.
iApply
(
mapsto_agree
with
"H1 H2"
).
Qed
.
Definition
oloc_to_val
(
ol
:
option
loc
)
:
val
:=
match
ol
with

None
=>
NONEV

Some
loc
=>
SOMEV
(#
loc
)
end
.
Local
Instance
oloc_to_val_inj
:
Inj
(=)
(=)
oloc_to_val
.
Proof
.
intros
[][];
simpl
;
congruence
.
Qed
.
Fixpoint
is_list
xs
v
:
iProp
Σ
:=
(
match
xs
with

[]
=>
⌜
v
=
NONEV
⌝

x
::
xs
=>
∃
l
(
t
:
val
),
⌜
v
=
SOMEV
#
l
%
V
⌝
∗
l
↦
{}
(
x
,
t
)%
V
∗
is_list
xs
t
(
match
xs
,
v
with

[],
None
=>
True

x
::
xs
,
Some
l
=>
∃
t
,
l
↦
{}
(
x
,
oloc_to_val
t
)%
V
∗
is_list
xs
t

_,
_
=>
False
end
)%
I
.
Lemma
is_list_disj
xs
v
:
is_list
xs
v

∗
is_list
xs
v
∗
(
⌜
v
=
NONEV
⌝
∨
∃
l
(
h
t
:
val
),
⌜
v
=
SOMEV
#
l
⌝
∗
l
↦
{}
(
h
,
t
)%
V
).
Lemma
is_list_dup
xs
v
:
is_list
xs
v

∗
is_list
xs
v
∗
match
v
with

None
=>
True

Some
l
=>
∃
h
t
,
l
↦
{}
(
h
,
oloc_to_val
t
)%
V
end
.
Proof
.
destruct
xs
;
auto
.
iIntros
"H"
;
iDestruct
"H"
as
(
l
t
)
"(> &
Hl & Hstack)"
.
destruct
xs
,
v
;
simpl
;
auto
;
first
by
iIntros
"[]"
.
iIntros
"H"
;
iDestruct
"H"
as
(
t
)
"(
Hl & Hstack)"
.
iDestruct
(
partial_mapsto_duplicable
with
"Hl"
)
as
"[Hl1 Hl2]"
.
iSplitR
"Hl2"
;
first
by
(
iExists
_,
_;
iFrame
).
iRight
;
auto
.
Qed
.
Lemma
is_list_unboxed
xs
v
:
is_list
xs
v

∗
⌜
val_is_unboxed
v
⌝
∗
is_list
xs
v
.
Proof
.
iIntros
"Hlist"
;
iDestruct
(
is_list_disj
with
"Hlist"
)
as
"[$ Heq]"
.
iDestruct
"Heq"
as
"[>  H]"
;
first
done
;
by
iDestruct
"H"
as
(?
?
?)
"[> ?]"
.
iSplitR
"Hl2"
;
first
by
(
iExists
_;
iFrame
).
by
iExists
_,
_.
Qed
.
Lemma
is_list_empty
xs
:
is_list
xs
(
InjLV
#())

∗
⌜
xs
=
[]
⌝
.
is_list
xs
None

∗
⌜
xs
=
[]
⌝
.
Proof
.
destruct
xs
;
iIntros
"Hstack"
;
auto
.
iDestruct
"Hstack"
as
(?
?)
"(% & H)"
;
discriminate
.
Qed
.
Lemma
is_list_cons
xs
l
h
t
:
l
↦
{}
(
h
,
t
)%
V

∗
is_list
xs
(
InjRV
#
l
)

∗
is_list
xs
(
Some
l
)

∗
∃
ys
,
⌜
xs
=
h
::
ys
⌝
.
Proof
.
destruct
xs
;
first
by
iIntros
"? %"
.
iIntros
"Hl Hstack"
;
iDestruct
"Hstack"
as
(
l'
t'
)
"(% & Hl' & Hrest)"
;
simplify_eq
.
iIntros
"Hl Hstack"
;
iDestruct
"Hstack"
as
(
t'
)
"(Hl' & Hrest)"
.
iDestruct
(
partial_mapsto_agree
with
"Hl Hl'"
)
as
"%"
;
simplify_eq
;
iExists
_;
auto
.
Qed
.
Definition
stack_inv
P
l
:=
(
∃
v
xs
,
l
↦
v
∗
is_list
xs
v
∗
P
xs
)%
I
.
(
∃
v
xs
,
l
↦
oloc_to_val
v
∗
is_list
xs
v
∗
P
xs
)%
I
.
Definition
is_stack_pred
P
v
:=
(
∃
l
,
⌜
v
=
#
l
⌝
∗
inv
N
(
stack_inv
P
l
))%
I
.
...
...
@@ 96,7 +100,7 @@ Section stack_works.
rewrite

wp_fupd
.
wp_lam
.
wp_alloc
l
as
"Hl"
.
iMod
(
inv_alloc
N
_
(
stack_inv
P
l
)
with
"[Hl HP]"
)
as
"#Hinv"
.
{
by
iNext
;
iExists
_
,
[];
iFrame
.
}
{
iNext
;
iExists
None
,
[];
iFrame
.
}
iModIntro
;
iApply
"HΦ"
;
iExists
_;
auto
.
Qed
.
...
...
@@ 116,16 +120,17 @@ Section stack_works.
iModIntro
.
wp_let
.
wp_alloc
l'
as
"Hl'"
.
wp_pures
.
wp_bind
(
CAS
_
_
_).
iInv
N
as
(
list'
xs
)
"(Hl & Hlist & HP)"
"Hclose"
.
iDestruct
(
is_list_unboxed
with
"Hlist"
)
as
"[>% Hlist]"
.
destruct
(
decide
(
list
=
list'
))
as
[
>
].

wp_cas_suc
.

wp_cas_suc
.
{
destruct
list'
;
left
;
done
.
}
iMod
(
"Hupd"
with
"HP"
)
as
"[HP HΨ]"
.
iMod
(
"Hclose"
with
"[Hl Hl' HP Hlist]"
)
as
"_"
.
{
iNext
;
iExists
(
S
OMEV
_),
(
v
::
xs
);
iFrame
;
iExists
_,
_;
iFrame
;
auto
.
}
{
iNext
;
iExists
(
S
ome
_),
(
v
::
xs
);
iFrame
;
iExists
_;
iFrame
;
auto
.
}
iModIntro
.
wp_if
.
by
iApply
(
"HΦ"
with
"HΨ"
).

wp_cas_fail
.
{
destruct
list
,
list'
;
simpl
;
congruence
.
}
{
destruct
list'
;
left
;
done
.
}
iMod
(
"Hclose"
with
"[Hl HP Hlist]"
).
{
iExists
_,
_;
iFrame
.
}
iModIntro
.
...
...
@@ 146,8 +151,8 @@ Section stack_works.
wp_lam
.
wp_bind
(
Load
_).
iInv
N
as
(
v
xs
)
"(Hl & Hlist & HP)"
"Hclose"
.
wp_load
.
iDestruct
(
is_list_d
isj
with
"Hlist"
)
as
"[Hlist H]"
.
iDestruct
"H"
as
"[>  HSome]"
.
iDestruct
(
is_list_d
up
with
"Hlist"
)
as
"[Hlist H]"
.
destruct
v
as
[
l'
];
last
first
.

iDestruct
(
is_list_empty
with
"Hlist"
)
as
%>.
iDestruct
"Hupd"
as
"[_ Hupdnil]"
.
iMod
(
"Hupdnil"
with
"HP"
)
as
"[HP HΨ]"
.
...
...
@@ 156,7 +161,7 @@ Section stack_works.
iModIntro
.
wp_match
.
iApply
(
"HΦ"
with
"HΨ"
).

iDestruct
"H
Some"
as
(
l'
h
t
)
"[> Hl']
"
.

iDestruct
"H
"
as
(
h
t
)
"Hl'
"
.
iMod
(
"Hclose"
with
"[Hlist Hl HP]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
iFrame
.
}
iModIntro
.
...
...
@@ 169,13 +174,13 @@ Section stack_works.
iModIntro
.
wp_let
.
wp_proj
.
wp_bind
(
CAS
_
_
_).
wp_pures
.
iInv
N
as
(
v'
xs''
)
"(Hl & Hlist & HP)"
"Hclose"
.
destruct
(
decide
(
v'
=
(
S
OMEV
#
l'
)))
as
[
>
].
destruct
(
decide
(
v'
=
(
S
ome
l'
)))
as
[
>
].
*
wp_cas_suc
.
iDestruct
(
is_list_cons
with
"[Hl'] Hlist"
)
as
(
ys
)
"%"
;
first
by
iExists
_.
simplify_eq
.
iDestruct
"Hupd"
as
"[Hupdcons _]"
.
iMod
(
"Hupdcons"
with
"HP"
)
as
"[HP HΨ]"
.
iDestruct
"Hlist"
as
(
l''
t'
)
"(% & Hl'' & Hlist)"
;
simplify_eq
.
iDestruct
"Hlist"
as
(
t'
)
"(Hl'' & Hlist)"
.
iDestruct
"Hl''"
as
(
q'
)
"Hl''"
.
iDestruct
(
mapsto_agree
with
"Hl' Hl''"
)
as
"%"
;
simplify_eq
.
iMod
(
"Hclose"
with
"[Hlist Hl HP]"
)
as
"_"
.
...
...
@@ 183,7 +188,7 @@ Section stack_works.
iModIntro
.
wp_pures
.
iApply
(
"HΦ"
with
"HΨ"
).
*
wp_cas_fail
.
*
wp_cas_fail
.
{
destruct
v'
;
simpl
;
congruence
.
}
iMod
(
"Hclose"
with
"[Hlist Hl HP]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
iFrame
.
}
iModIntro
.
...
...
theories/concurrent_stacks/concurrent_stack4.v
View file @
d579dc8d
...
...
@@ 267,47 +267,51 @@ Section proofs.
iApply
(
mapsto_agree
with
"H1 H2"
).
Qed
.
Definition
oloc_to_val
(
ol
:
option
loc
)
:
val
:=
match
ol
with

None
=>
NONEV

Some
loc
=>
SOMEV
(#
loc
)
end
.
Local
Instance
oloc_to_val_inj
:
Inj
(=)
(=)
oloc_to_val
.
Proof
.
intros
[][];
simpl
;
congruence
.
Qed
.
Fixpoint
is_list
xs
v
:
iProp
Σ
:=
(
match
xs
with

[]
=>
⌜
v
=
NONEV
⌝

x
::
xs
=>
∃
l
(
t
:
val
),
⌜
v
=
SOMEV
#
l
%
V
⌝
∗
l
↦
{}
(
x
,
t
)%
V
∗
is_list
xs
t
(
match
xs
,
v
with

[],
None
=>
True

x
::
xs
,
Some
l
=>
∃
t
,
l
↦
{}
(
x
,
oloc_to_val
t
)%
V
∗
is_list
xs
t

_,
_
=>
False
end
)%
I
.
Lemma
is_list_disj
xs
v
:
is_list
xs
v

∗
is_list
xs
v
∗
(
⌜
v
=
NONEV
⌝
∨
∃
l
(
h
t
:
val
),
⌜
v
=
SOMEV
#
l
⌝
∗
l
↦
{}
(
h
,
t
)%
V
).
Lemma
is_list_dup
xs
v
:
is_list
xs
v

∗
is_list
xs
v
∗
match
v
with

None
=>
True

Some
l
=>
∃
h
t
,
l
↦
{}
(
h
,
oloc_to_val
t
)%
V
end
.
Proof
.
destruct
xs
;
auto
.
iIntros
"H"
;
iDestruct
"H"
as
(
l
t
)
"(> &
Hl & Hstack)"
.
destruct
xs
,
v
;
simpl
;
auto
;
first
by
iIntros
"[]"
.
iIntros
"H"
;
iDestruct
"H"
as
(
t
)
"(
Hl & Hstack)"
.
iDestruct
(
partial_mapsto_duplicable
with
"Hl"
)
as
"[Hl1 Hl2]"
.
iSplitR
"Hl2"
;
first
by
(
iExists
_,
_;
iFrame
).
iRight
;
auto
.
Qed
.
Lemma
is_list_unboxed
xs
v
:
is_list
xs
v

∗
⌜
val_is_unboxed
v
⌝
∗
is_list
xs
v
.
Proof
.
iIntros
"Hlist"
;
iDestruct
(
is_list_disj
with
"Hlist"
)
as
"[$ Heq]"
.
iDestruct
"Heq"
as
"[>  H]"
;
first
done
;
by
iDestruct
"H"
as
(?
?
?)
"[> ?]"
.
iSplitR
"Hl2"
;
first
by
(
iExists
_;
iFrame
).
by
iExists
_,
_.
Qed
.
Lemma
is_list_empty
xs
:
is_list
xs
(
InjLV
#())

∗
⌜
xs
=
[]
⌝
.
is_list
xs
None

∗
⌜
xs
=
[]
⌝
.
Proof
.
destruct
xs
;
iIntros
"Hstack"
;
auto
.
iDestruct
"Hstack"
as
(?
?)
"(% & H)"
;
discriminate
.
Qed
.
Lemma
is_list_cons
xs
l
h
t
:
l
↦
{}
(
h
,
t
)%
V

∗
is_list
xs
(
InjRV
#
l
)

∗
is_list
xs
(
Some
l
)

∗
∃
ys
,
⌜
xs
=
h
::
ys
⌝
.
Proof
.
destruct
xs
;
first
by
iIntros
"? %"
.
iIntros
"Hl Hstack"
;
iDestruct
"Hstack"
as
(
l'
t'
)
"(% & Hl' & Hrest)"
;
simplify_eq
.
iIntros
"Hl Hstack"
;
iDestruct
"Hstack"
as
(
t'
)
"(Hl' & Hrest)"
.
iDestruct
(
partial_mapsto_agree
with
"Hl Hl'"
)
as
"%"
;
simplify_eq
;
iExists
_;
auto
.
Qed
.
Definition
stack_inv
P
l
:=
(
∃
v
xs
,
l
↦
v
∗
is_list
xs
v
∗
P
xs
)%
I
.
(
∃
v
xs
,
l
↦
oloc_to_val
v
∗
is_list
xs
v
∗
P
xs
)%
I
.
Definition
is_stack_pred
P
v
:=
(
∃
mailbox
l
,
⌜
v
=
(
mailbox
,
#
l
)%
V
⌝
∗
is_mailbox
P
mailbox
∗
inv
Nstack
(
stack_inv
P
l
))%
I
.
...
...
@@ 321,7 +325,7 @@ Section proofs.
wp_alloc
l
as
"Hl"
.
wp_apply
mk_mailbox_works
;
first
done
.
iIntros
(
v
)
"#Hmailbox"
.
iMod
(
inv_alloc
Nstack
_
(
stack_inv
P
l
)
with
"[Hl HP]"
)
as
"#Hinv"
.
{
by
iNext
;
iExists
_
,
[];
iFrame
.
}
{
by
iNext
;
iExists
None
,
[];
iFrame
.
}
wp_pures
.
iModIntro
;
iApply
"HΦ"
;
iExists
_;
auto
.
Qed
.
...
...
@@ 348,18 +352,19 @@ Section proofs.
iModIntro
.
wp_let
.
wp_alloc
l'
as
"Hl'"
.
wp_pures
.
wp_bind
(
CAS
_
_
_).
iInv
Nstack
as
(
list'
xs
)
"(Hl & Hlist & HP)"
"Hclose"
.
iDestruct
(
is_list_unboxed
with
"Hlist"
)
as
"[>% Hlist]"
.
destruct
(
decide
(
list
=
list'
))
as
[
>
].
*
wp_cas_suc
.
*
wp_cas_suc
.
{
destruct
list'
;
left
;
done
.
}
iMod
(
fupd_intro_mask'
(
⊤
∖
↑
Nstack
)
inner_mask
)
as
"Hupd'"
;
first
solve_ndisj
.
iMod
(
"Hupd"
with
"HP"
)
as
"[HP HΨ]"
.
iMod
"Hupd'"
as
"_"
.
iMod
(
"Hclose"
with
"[Hl Hl' HP Hlist]"
)
as
"_"
.
{
iNext
;
iExists
(
S
OMEV
_),
(
v'
::
xs
);
iFrame
;
iExists
_,
_;
iFrame
;
auto
.
}
{
iNext
;
iExists
(
S
ome
_),
(
v'
::
xs
);
iFrame
;
iExists
_;
iFrame
;
auto
.
}
iModIntro
.
wp_if
.
by
iApply
(
"HΦ"
with
"HΨ"
).
*
wp_cas_fail
.
{
destruct
list
,
list'
;
simpl
;
congruence
.
}
{
destruct
list'
;
left
;
done
.
}
iMod
(
"Hclose"
with
"[Hl HP Hlist]"
).
{
iExists
_,
_;
iFrame
.
}
iModIntro
.
...
...
@@ 399,8 +404,8 @@ Section proofs.

wp_match
.
wp_bind
(
Load
_).
iInv
Nstack
as
(
v
xs
)
"(Hl & Hlist & HP)"
"Hclose"
.
wp_load
.
iDestruct
(
is_list_d
isj
with
"Hlist"
)
as
"[Hlist H]"
.
iDestruct
"H"
as
"[>  HSome]"
.
iDestruct
(
is_list_d
up
with
"Hlist"
)
as
"[Hlist H]"
.
destruct
v
as
[
l'
];
last
first
.
*
iDestruct
(
is_list_empty
with
"Hlist"
)
as
%>.
iMod
(
fupd_intro_mask'
(
⊤
∖
↑
Nstack
)
inner_mask
)
as
"Hupd'"
;
first
solve_ndisj
.
iMod
(
"Hupd"
with
"HP"
)
as
"[HP HΨ]"
.
...
...
@@ 410,7 +415,7 @@ Section proofs.
iModIntro
.
wp_match
.
iApply
(
"HΦ"
with
"HΨ"
).
*
iDestruct
"H
Some"
as
(
l'
h
t
)
"[> Hl']
"
.
*
iDestruct
"H
"
as
(
h
t
)
"Hl'
"
.
iMod
(
"Hclose"
with
"[Hlist Hl HP]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
iFrame
.
}
iModIntro
.
...
...
@@ 423,7 +428,7 @@ Section proofs.
iModIntro
.
wp_pures
.
wp_bind
(
CAS
_
_
_).
iInv
Nstack
as
(
v'
xs''
)
"(Hl & Hlist & HP)"
"Hclose"
.
destruct
(
decide
(
v'
=
(
S
OMEV
#
l'
)))
as
[
>
].
destruct
(
decide
(
v'
=
(
S
ome
l'
)))
as
[
>
].
+
wp_cas_suc
.
iDestruct
(
is_list_cons
with
"[Hl'] Hlist"
)
as
(
ys
)
"%"
;
first
by
iExists
_.
simplify_eq
.
...
...
@@ 431,7 +436,7 @@ Section proofs.
iDestruct
"Hupd"
as
"[Hupdcons _]"
.
iMod
(
"Hupdcons"
with
"HP"
)
as
"[HP HΨ]"
.
iMod
"Hupd'"
as
"_"
.
iDestruct
"Hlist"
as
(
l''
t'
)
"(% & Hl'' & Hlist)"
;
simplify_eq
.
iDestruct
"Hlist"
as
(
t'
)
"(Hl'' & Hlist)"
.
iDestruct
"Hl''"
as
(
q'
)
"Hl''"
.
iDestruct
(
mapsto_agree
with
"Hl' Hl''"
)
as
"%"
;
simplify_eq
.
iMod
(
"Hclose"
with
"[Hlist Hl HP]"
)
as
"_"
.
...
...
@@ 439,7 +444,7 @@ Section proofs.
iModIntro
.
wp_pures
.
iApply
(
"HΦ"
with
"HΨ"
).
+
wp_cas_fail
.
+
wp_cas_fail
.
{
destruct
v'
;
simpl
;
congruence
.
}
iMod
(
"Hclose"
with
"[Hlist Hl HP]"
)
as
"_"
.
{
iNext
;
iExists
_,
_;
iFrame
.
}
iModIntro
.
...
...
theories/hocap/fg_bag.v
View file @
d579dc8d
...
...
@@ 49,49 +49,51 @@ Section proof.
Lemma
rown_duplicate
l
v
:
rown
l
v

∗
rown
l
v
∗
rown
l
v
.
Proof
.
iDestruct
1
as
(
q
)
"[Hl Hl']"
.
iSplitL
"Hl"
;
iExists
_;
eauto
.
Qed
.
Fixpoint
is_list
(
hd
:
val
)
(
xs
:
list
val
)
:
iProp
Σ
:=
match
xs
with

[]
=>
⌜
hd
=
NONEV
⌝
%
I

x
::
xs
=>
(
∃
(
l
:
loc
)
(
tl
:
val
),
⌜
hd
=
SOMEV
#
l
⌝
∗
rown
l
(
x
,
tl
)
∗
is_list
tl
xs
)%
I
Definition
oloc_to_val
(
ol
:
option
loc
)
:
val
:=
match
ol
with

None
=>
NONEV