
iris-atomic
Zhen Zhang

October 24, 2016

1 Overview

Figure 1: Two dimensions of atomicity verification in Iris

2 Generic syncer spec

synced(R, f ′, f) ≜ ∀P, Q, x. {R ∗ P (x)} f(x) {v. R ∗ Q(x, v)} →
{P (x)} f ′(x) {v. Q(x, v)}

syncer(R, s) ≜ ∀f. wp s(f)
{
f ′. synced(R, f ′, f)

}
mkSyncer(f) ≜ ∀R. {R} f() {s. □ syncer(R, s)}

This generic syncer spec is inspired by CaReSL. In CaReSL, fine-grained syncer (e.g.
flat combiner) is proven to be contextual refinement of coarse-grained mkSync (See section
4). However, there is no program refinement yet in Iris, so I made this generalization and
prove that flat combiner satisfies this directly.

In fact, any sensible syncer is expected to satisfy this generic spec.
Besides generalization, I also split original spec into two parts, corresponding to two

calls that happen at different times. More generally speaking, this problem is caused by a
special case of curried function (e.g. λx1. λx2. ...): Is it possible to go from

∀x1, x2. {P (x1, x2)} f(x1, x2) {Q(x1, x2)}

1



to
∀x1. {⊤} f(x1) {f1. ∀x2. {P (x1, x2)} f1(x2) {Q(x1, x2)}}

, assuming that f ≜ λx1, x2. e.
Finally, I’d like to point out that pre- and post-conditions P, Q are universally qualified

per application, that is to say, P, Q are arbitrary depending on the context.
And similarly, f is universally qualified per synchronization, which means that syncer

is only parameterized by the shared resource R, it can work with any operation that needs
to access this R.

3 Logically atomic triple (LAT)

⟨g. α(g)⟩ e ⟨v. β(g, v)⟩Eo
Ei

≜

∀P, Q.
P ⇛Eo Ei ∃g, α(g) ∗ (α(g) ∗Ei Eo P ∧ ∀v. β(g, v) ∗Ei Eo Q(g, v)) −∗

{P } e {v. ∃g. Q(g, v)}

Note again, the P, Q are arbitrary depending on the context.
And also, note the separation product of two linear view shifts: First one represents

abandon direction, while the second one represents commit direction. Using linear view
shifts enables us to frame alongside the transition some non-persistent resource.

Figure 2: Sketch of how library function specified with LAT will be used

4 Coarse-grained syncer
First, we give the CaReSL’s mkSync written in heap-lang (which is basically the same as
in Coq, despite a few cosmetics).

mk_sync :=
λ: <>,

2



let l := newlock() in
λ: f x,

acquire l;
let ret := f x in
release l;
ret.

Okay, now the question is: can we give a LAT spec for mk_sync? Actually, we can!
and we can do this in a general way (i.e. for any syncer satisfying the generic syncer spec).
We will briefly discuss about it in the next section.

5 Encoding generic syncer spec as a LAT-style spec
The first question is: Why do we want to do so?

First, they both talk about atomicity, so we will naturally want to know what is the
possible relationship between them. And second, the generic syncer spec is not canonical –
it doesn’t tell explicitly what effects that operation has. When use the generic syncer spec
as a client, you have to prove something about e every time. But LAT, on the contrary,
gives you the exact specification of the operation itself, which means that you only need to
prove the viewshifts (in some sense similar to weakening/strengthening rules). And most
importantly, this exact specification, should look exactly like the sequential specification!
Just consider the following illustrative comparison of a sequential/concurrent stack push
spec:

∀xs. {stack(s, xs)}push(x, s) {_. stack(s, x :: xs)}
⟨xs. stack′(s, xs)⟩push'(x, s) ⟨_. stack′(s, x :: xs)⟩

The second question is: Is it possible to do so?
Intuitively, what syncer spec says is that the e’s sequential effects are compressed to a

single point. Consider the coarse-grained implementation of generic syncer spec, mk_sync,
it guards the resource R by putting it inside a lock, thus every operation will exclusively
own R for a certain period, which makes the whole operation look atomic, when observed
from outside in terms of resource accessing.

The third question is: How to do it?
First, consider what LAT’s client can provide to the library: abandoning and committing

viewshifts. And these two actions must happen instantly. So, naturally, we will try to
commit at the time of finishing the operation and give back the R to lock. But what about
abandoning? What role will it have in the syncer spec?

Remember that there is a canonical pre-condition α in LAT, which should coincide with
the sequential spec. But the sequential code, when executed between the lock/unlock, is
still non-atomic. So after we exchange P for α, we must retain α for a long time, while we
also have to close the LAT viewshifts in an instant. We can’t close by abandoning, since
we need to give back the α; and we can’t close by committing, since we haven’t started the
action yet!

But wait, why we must give back α while losing it? What if we require that α is
duplicable? Then problem solved! We just need to abandon in the beginning to get a
duplicated α out, then committing with P when finishing off.

3



Now, with a sketch in mind, I will introduce you to the detailed construction: First,
here is the specialized logically atomic triple to serve this purpose:

gtriple(γ, α, f, x, β, Ei, Eo) ≜ ⟨g. g1/2 γ
∗ □α(g)⟩ f(x) ⟨v. ∃g′. g′1/2 γ

∗ β(x, g, g′, v)⟩Eo
Ei

Here, g represents ghost state. g can be of any proper type. g′1/2 γ
is a snapshot of

g, i.e. local knowledge about the physical configuration. (Why it is written in such way?
Well, this is the implementation detail related to the monoid used to encode this).

Here, the persistent (thus duplicable) α(g) is some extra condition. And in the post
condition, we say there exists an updated ghost state g′, which satisfy β, a relation over
input, previous state, current state, and output.

Let’s take concurrent push again as an example. If s is a stack pointer,

Rs ≜ ∃xs. stack(s, xs) ∗ xs1/2 γ

is the physical configuration plus global snapshot, then synced(stack(s, xs),push',push(s))
should expand like this:

∀P, Q, x. {Rs ∗ P (x)}push(s)(x) {v. Rs ∗ Q(x, v)} →
{P (x)}push'(x) {v. Q(x, v)}

And the LAT we can get from it looks like this:

⟨xs. xs1/2 γ⟩push'(x) ⟨_. ∃xs′. xs′1/2 γ
∗ (xs′ = x :: xs)⟩

Here, note that in this case □α(g) is selected as ⊤ (thus we can imagine that in most
cases persistent restriction is not much of a problem); also, s is entirely hidden somewhere
in some global place, i.e., using xs1/2 γ

, you can also atomically access ∃s. stack(s, xs),
even though such accessing is not specified as a LAT.

Now, let’s consider the last question: How to formalize it?

sync(mk_syncer) :=
λ: f_seq l,

let s := mk_syncer() in
s (f_seq l).

The code above is a helper function sync, which constructs the syncer, partially applies
internal state value l to the sequential operation f_seq, and synchronizes the partially
applied operation. There is an assumption that l should represent a valid state (either
freshly constructed or whatever).

Now, if conditions seqSpec(f_seq, ϕ, α, β, ⊤) (see 5) and mkSyncer(mk_syncer) are
satisfied, then we have:

∀g0. ϕ(l, g0) ⊢ wp sync(mk_syncer,f_seq, l)
{
f. ∃γ. g

1/2
0

γ

∗ ∀x. □ gtriple(γ, α, f, x, β, Ei, ⊤)
}

Here is the definition of sequential specification pattern :

4



seqSpec(f, ϕ, α, β, E) ≜ ∀l. {⊤} f(l) {f ′.

■∀x, Φ, g.

ϕ(l, g) ∗ □α(g)∗
(∀v, g′. ϕ(l, g′) −∗ β(x, g, g′, v) ∗E E Φ(v))

⊢ wpE f ′(x)
{
Φ

} }
In pre-condition, we have persistent α(g) and exclusive ownership of shared state; and

when it returns, we get back the updated physical state g′, as well as β.
Funny thing is again that I have to apply f to l first ... because of currying problem.
To be more concrete, here is the invariant that will be used globally: (∃g. ϕ(l, g′) ∗

g1/2 γ
∗ Px.

Figure 3: The sketch of proof: to prove triple for f'(x), we prove another one for f(x).
The blue lines are opening viewshifts; the green lines are closing viewshifts; the orange lines
are ghost update

6 Treiber’s stack
push s x :=

let hd := !s in
let s' := ref SOME (x, hd) in
if CAS s hd s'
then ()
else push s x.

pop s :=
let hd := !s in
match !hd with
| SOME (x, hd') =>
if: CAS s hd hd'
then SOME x
else pop s

| NONE => NONE
end.

5



iter hd f :=
match !hd with
| NONE => ()
| SOME (x, hd') => f x ; iter hd' f
end.

These push and pop are all standard lock-free implementations. We will give LAT spec
for these two operations first:

6.1 Logically atomic spec (version 1)
⟨xs. stack(s, xs)⟩ push(s, x) ⟨stack(s, x :: xs)⟩⊤

heapN

⟨xs. stack(s, xs)⟩ pop(s) ⟨v.
(∃x, xs′. v = SOME(x) ∗ stack(s, xs′))∨
(v = NONE ∗ xs = ∅ ∗ stack(s, ∅)) ⟩⊤

heapN

6.2 Logically atomic spec (version 2)
⟨hd, xs. s 7→ hd ∗ list(hd, xs)⟩ push(s, x) ⟨∃hd′. s 7→ hd′ ∗ hd′ 7→ SOME(x, hd) ∗ list(hd, xs)⟩⊤

heapN

⟨hd, xs. s 7→ hd ∗ list(hd, xs)⟩ pop(s) ⟨v.
(∃x, xs′, hd′.

v = SOME(x) ∗ hd 7→ SOME(x, hd′)∗
s 7→ hd′ ∗ list(hd′, xs′)

)∨

(v = NONE ∗ xs = ∅ ∗ hd 7→ NONE)
⟩⊤

heapN

6.3 Why such dichotomy?
Apparently, the version 1 is more preferable as a general spec, since the implementation
might not necessarily be a linked-list.

But if we want to iterate over it using iter using a per-item style spec, than we might
expose enough implementation details to tie per-item resource to physical location. And as
a result, to maintain such property, we must also make push’s LAT spec exposing enough
details as well (And it doesn’t even make sense to use pop in this case). Below is the
discussion about per-item spec.

7 Per-item spec

fSpec(γ, xs, s, f, Rf, RI) ≜
∀x. {(∃hd. evs(γ, hd, x)) ∗ ∃xs. stack′(γ, xs, s) ∗ RI

ι ∗ Rf} f(x) {v. v = () ∗ Rf}

The fSpec specifies that f can access the per-item resource predicate associated with x
through open/close the global invariants. The evs(γ, hd, x) provides the evidence that x is
part of the stack.

The first ∃hd can be interpreted as “We don’t care which cell pointer points to the
item x in stack”; The second ∃xs can be interpreted as “We don’t care what s is currently
pointing to, since the previously existing elements still exist in the stack now”.

Now, let’s observe the iter’s spec and push’s spec (in a per-item setting):

6



iterSpec(γ, s, Rf, RI) ≜
∀xs, hd, f.

fSpec(γ, xs, s, f, Rf, RI) →
{ ∃xs. stack′(γ, xs, s) ∗ RI

ι ∗ list′(γ, hd, xs) ∗ Rf} iter(hd, f) {v. v = () ∗ Rf}

pushSpec(γ, s, x, RI) ≜
{R(x) ∗ ∃xs. stack′(xs, s) ∗ RI

ι} push(s, x) {v. v = () ∗ (∃hd. ev(γ, hd, x))}

Okay, back to the per-item spec, why do you need to make sure that the stack is growth-
only, and governed by a global invariant?

Answer: because we need to iterate thought it non-atomically. I mean, the process of
iteration is not atomic. The single operation f still needs to atomically access any resource
related x.

However, my current fSpec is quite bad actually ... first, CaReSL has a smaller, nicer
per-item spec; second, it doesn’t sound perfectly legitimate that we can’t pop things out
... I just need to make sure that the things currrently in the stack conforms to certain
resource predicate. So, if the structure of linking allows us to control validities of all
possible references into certain item, then popping out an element can be atomic, thus
doesn’t compromise the basic invariant.

8 Flat combiner
Here is my implementation:

doOp :=
λ: p,

match !p with
| InjL (f, x) => p <- InjR (f x)
| InjR _ => ()
end.

try_srv :=
λ: lk s,
if try_acquire lk

then let hd := !s in
iter hd doOp;
release lk

else ().

loop p s lk :=
match !p with
| InjL _ =>

try_srv lk s;

7



loop p s lk
| InjR r => r
end.

install :=
λ: f x s,

let p := ref (InjL (f, x)) in
push s p;
p.

mk_flat :=
λ: <>,
let lk := newlock() in
let s := new_stack() in
λ: f x,

let p := install f x s in
let r := loop p s lk in
r.

Compared to CaReSL, here are several notable differences:

• I break them down into five procedures, instead of nesting them inside the constructor.
They all have their own spec, and it is easier to reason about.

• CaReSL’s flat constructor takes f; mine doesn’t, which is more flexible.

• CaReSL’s install utilizes TLS (thread-local storage) to avoid severe memory leakage.
In my implementation, a new slot is created and pushed every time the operation is
called. It is terrible in practice, but nevertheless follows the same spec.

Also, another problem that exists both in my, CaReSL, and FCSL’s example code, is
that we never recycle the slots.

Figure 4: Helping protocol illustration. Note that this graph is heavily simplified to reflect
how I encode protocol with bare exclusive monoids.

The black diamond is a token owned by server lock; The other three kinds of token are
all tagged with i, which is similar to thread id in CaReSL’s reasoning, but in my case, it is

8



the slot address (In some sense it is more flexible since in that way, the same thread can
initiate several operations at the same time).

Here is the per-item (i.e. request slot) invariant, which have four branches.

∃y. p
1/27−−→ injR(−) ∗ ♢i ∗ ◦i

∨∃f, x, P, Q. p
1/27−−→ injL(f, x) ∗ x1/2 γ

∗ P (x) ∗ ({R ∗ P (x)} f(x) {v. R ∗ Q(x, v)}) ∗ κ ⇒ Q(x) ∗ ♢i ∗ •i

∨∃x. p
1/27−−→ injL(−, x) ∗ x1/4 γ

∗ ♦ ∗ •i

∨∃x, y. p
1/27−−→ injR(y) ∗ x1/2 γ

∗ κ ⇒ Q(x) ∗ Q(x, y) ∗ ♢i ∗ •i

Note how f, x, P, Q are all hidden under existential qualification, and Q(x) is saved
under some constant name κ. Note how only post-condition matters to waiting client.

9


	1 Overview
	2 Generic syncer spec
	3 Logically atomic triple (LAT)
	4 Coarse-grained syncer
	5 Encoding generic syncer spec as a LAT-style spec
	6 Treiber's stack
	6.1 Logically atomic spec (version 1)
	6.2 Logically atomic spec (version 2)
	6.3 Why such dichotomy?

	7 Per-item spec
	8 Flat combiner

