From fcd5c1de2275acb01f1d1b68470b1bea6f46cea6 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 4 Jun 2019 08:26:54 +0200 Subject: [PATCH] =?UTF-8?q?Get=20rid=20of=20`=CF=81`=20argument=20of=20`sp?= =?UTF-8?q?ec=5Fctx`.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../logrel/F_mu_ref_conc/examples/counter.v | 30 ++-- theories/logrel/F_mu_ref_conc/examples/fact.v | 22 +-- theories/logrel/F_mu_ref_conc/examples/lock.v | 30 ++-- .../F_mu_ref_conc/examples/stack/CG_stack.v | 68 ++++----- .../F_mu_ref_conc/examples/stack/refinement.v | 14 +- .../logrel/F_mu_ref_conc/fundamental_binary.v | 134 +++++++++--------- theories/logrel/F_mu_ref_conc/rules_binary.v | 107 +++++++------- .../logrel/F_mu_ref_conc/soundness_binary.v | 6 +- 8 files changed, 208 insertions(+), 203 deletions(-) diff --git a/theories/logrel/F_mu_ref_conc/examples/counter.v b/theories/logrel/F_mu_ref_conc/examples/counter.v index 58eb5906..7c4eaa75 100644 --- a/theories/logrel/F_mu_ref_conc/examples/counter.v +++ b/theories/logrel/F_mu_ref_conc/examples/counter.v @@ -60,21 +60,21 @@ Section CG_Counter. Hint Rewrite CG_increment_subst : autosubst. - Lemma steps_CG_increment E Ï j K x n: + Lemma steps_CG_increment E j K x n: nclose specN ⊆ E → - spec_ctx Ï âˆ— x ↦ₛ (#nv n) ∗ j ⤇ fill K (App (CG_increment (Loc x)) Unit) + spec_ctx ∗ x ↦ₛ (#nv n) ∗ j ⤇ fill K (App (CG_increment (Loc x)) Unit) ⊢ |={E}=> j ⤇ fill K (Unit) ∗ x ↦ₛ (#nv (S n)). Proof. iIntros (HNE) "[#Hspec [Hx Hj]]". unfold CG_increment. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. - iMod (step_load _ _ j ((BinOpRCtx _ (#nv _) :: StoreRCtx (LocV _) :: K)) + iMod (step_load _ j ((BinOpRCtx _ (#nv _) :: StoreRCtx (LocV _) :: K)) _ _ _ with "[Hj Hx]") as "[Hj Hx]"; eauto. { iFrame "Hspec Hj"; trivial. } simpl. - iMod (do_step_pure _ _ _ ((StoreRCtx (LocV _)) :: K) with "[$Hj]") as "Hj"; + iMod (do_step_pure _ _ ((StoreRCtx (LocV _)) :: K) with "[$Hj]") as "Hj"; eauto. simpl. - iMod (step_store _ _ j K with "[$Hj $Hx]") as "[Hj Hx]"; eauto. + iMod (step_store _ j K with "[$Hj $Hx]") as "[Hj Hx]"; eauto. iModIntro; iFrame. Qed. @@ -108,15 +108,15 @@ Section CG_Counter. Hint Rewrite CG_locked_increment_subst : autosubst. - Lemma steps_CG_locked_increment E Ï j K x n l : + Lemma steps_CG_locked_increment E j K x n l : nclose specN ⊆ E → - spec_ctx Ï âˆ— x ↦ₛ (#nv n) ∗ l ↦ₛ (#â™v false) + spec_ctx ∗ x ↦ₛ (#nv n) ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App (CG_locked_increment (Loc x) (Loc l)) Unit) ={E}=∗ j ⤇ fill K Unit ∗ x ↦ₛ (#nv S n) ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE) "[#Hspec [Hx [Hl Hj]]]". iMod (steps_with_lock - _ _ j K _ _ _ _ UnitV UnitV with "[$Hj Hx $Hl]") as "Hj"; eauto. + _ j K _ _ _ _ UnitV UnitV with "[$Hj Hx $Hl]") as "Hj"; eauto. - iIntros (K') "[#Hspec Hxj]". iApply steps_CG_increment; by try iFrame. - by iFrame. @@ -151,16 +151,16 @@ Section CG_Counter. Hint Rewrite counter_read_subst : autosubst. - Lemma steps_counter_read E Ï j K x n : + Lemma steps_counter_read E j K x n : nclose specN ⊆ E → - spec_ctx Ï âˆ— x ↦ₛ (#nv n) + spec_ctx ∗ x ↦ₛ (#nv n) ∗ j ⤇ fill K (App (counter_read (Loc x)) Unit) ={E}=∗ j ⤇ fill K (#n n) ∗ x ↦ₛ (#nv n). Proof. intros HNE. iIntros "[#Hspec [Hx Hj]]". unfold counter_read. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (step_load _ _ j K with "[$Hj Hx]") as "[Hj Hx]"; eauto. + iMod (step_load _ j K with "[$Hj Hx]") as "[Hj Hx]"; eauto. by iFrame. Qed. @@ -247,17 +247,17 @@ Section CG_Counter. Lemma FG_CG_counter_refinement : [] ⊨ FG_counter ≤log≤ CG_counter : TProd (TArrow TUnit TUnit) (TArrow TUnit TNat). Proof. - iIntros (Δ [|??] Ï ?) "#(Hspec & HΓ)"; iIntros (j K) "Hj"; last first. + iIntros (Δ [|??] ?) "#(Hspec & HΓ)"; iIntros (j K) "Hj"; last first. { iDestruct (interp_env_length with "HΓ") as %[=]. } iClear "HΓ". cbn -[FG_counter CG_counter]. rewrite ?empty_env_subst /CG_counter /FG_counter. iApply fupd_wp. - iMod (steps_newlock _ _ j (LetInCtx _ :: K) with "[$Hj]") + iMod (steps_newlock _ j (LetInCtx _ :: K) with "[$Hj]") as (l) "[Hj Hl]"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (step_alloc _ _ j (LetInCtx _ :: K) with "[$Hj]") + iMod (step_alloc _ j (LetInCtx _ :: K) with "[$Hj]") as (cnt') "[Hj Hcnt']"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. @@ -308,7 +308,7 @@ Section CG_Counter. + (* CAS succeeds *) (* In this case, we perform increment in the coarse-grained one *) iMod (steps_CG_locked_increment - _ _ _ _ _ _ _ _ with "[Hj Hl Hcnt']") as "[Hj [Hcnt' Hl]]". + _ _ _ _ _ _ _ with "[Hj Hl Hcnt']") as "[Hj [Hcnt' Hl]]". { iFrame "Hspec Hcnt' Hl Hj"; trivial. } iApply (wp_cas_suc with "[Hcnt]"); auto. iModIntro. iNext. iIntros "Hcnt". diff --git a/theories/logrel/F_mu_ref_conc/examples/fact.v b/theories/logrel/F_mu_ref_conc/examples/fact.v index 5ef328cc..d39e9d8d 100644 --- a/theories/logrel/F_mu_ref_conc/examples/fact.v +++ b/theories/logrel/F_mu_ref_conc/examples/fact.v @@ -68,7 +68,7 @@ Section fact_equiv. Lemma fact_fact_acc_refinement : [] ⊨ fact ≤log≤ fact_acc : (TArrow TNat TNat). Proof. - iIntros (? vs Ï _) "[#HE HΔ]". + iIntros (? vs _) "[#HE HΔ]". iDestruct (interp_env_length with "HΔ") as %?; destruct vs; simplify_eq. iClear "HΔ". simpl. iIntros (j K) "Hj"; simpl. @@ -87,7 +87,7 @@ Section fact_equiv. - iApply wp_pure_step_later; auto. iNext; simpl; asimpl. rewrite fact_acc_body_unfold. - iMod (do_step_pure _ _ _ (AppLCtx _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (AppLCtx _ :: _) with "[$Hj]") as "Hj"; auto. rewrite -fact_acc_body_unfold. simpl; asimpl. iMod (do_step_pure with "[$Hj]") as "Hj"; auto. @@ -95,7 +95,7 @@ Section fact_equiv. iApply wp_pure_step_later; auto. iNext; simpl. iApply wp_value. simpl. - iMod (do_step_pure _ _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. simpl. iApply wp_pure_step_later; auto. iNext; simpl. @@ -106,7 +106,7 @@ Section fact_equiv. - iApply wp_pure_step_later; auto. iNext; simpl; asimpl. rewrite fact_acc_body_unfold. - iMod (do_step_pure _ _ _ (AppLCtx _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (AppLCtx _ :: _) with "[$Hj]") as "Hj"; auto. rewrite -fact_acc_body_unfold. simpl; asimpl. iMod (do_step_pure with "[$Hj]") as "Hj"; auto. @@ -114,7 +114,7 @@ Section fact_equiv. iApply wp_pure_step_later; auto. iNext; simpl. iApply wp_value. simpl. - iMod (do_step_pure _ _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. simpl. iApply wp_pure_step_later; auto. iNext; simpl. @@ -124,11 +124,11 @@ Section fact_equiv. iApply (wp_bind (fill [AppRCtx (RecV _)])). iApply wp_pure_step_later; auto. iNext; simpl; iApply wp_value; simpl. - iMod (do_step_pure _ _ _ (LetInCtx _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (LetInCtx _ :: _) with "[$Hj]") as "Hj"; auto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; auto. asimpl. - iMod (do_step_pure _ _ _ (LetInCtx _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (LetInCtx _ :: _) with "[$Hj]") as "Hj"; auto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; auto. asimpl. @@ -146,7 +146,7 @@ Section fact_equiv. Lemma fact_acc_fact_refinement : [] ⊨ fact_acc ≤log≤ fact : (TArrow TNat TNat). Proof. - iIntros (? vs Ï _) "[#HE HΔ]". + iIntros (? vs _) "[#HE HΔ]". iDestruct (interp_env_length with "HΔ") as %?; destruct vs; simplify_eq. iClear "HΔ". simpl. iIntros (j K) "Hj"; simpl. @@ -173,7 +173,7 @@ Section fact_equiv. iNext; simpl; asimpl. iMod (do_step_pure with "[$Hj]") as "Hj"; auto. simpl; asimpl. - iMod (do_step_pure _ _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. iApply (wp_bind (fill [IfCtx _ _])). iApply wp_pure_step_later; auto. iNext; simpl. @@ -198,12 +198,12 @@ Section fact_equiv. iApply wp_pure_step_later; auto. iNext; simpl. iApply wp_value. simpl. - iMod (do_step_pure _ _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. + iMod (do_step_pure _ _ (IfCtx _ _ :: _) with "[$Hj]") as "Hj"; auto. simpl. iApply wp_pure_step_later; auto. iNext; simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; auto. - iMod (do_step_pure _ _ _ (AppRCtx (RecV _):: BinOpRCtx _ (#nv _) :: _) + iMod (do_step_pure _ _ (AppRCtx (RecV _):: BinOpRCtx _ (#nv _) :: _) with "[$Hj]") as "Hj"; eauto. simpl. iApply (wp_bind (fill [LetInCtx _])). diff --git a/theories/logrel/F_mu_ref_conc/examples/lock.v b/theories/logrel/F_mu_ref_conc/examples/lock.v index ba8a8a91..7c3d8ed5 100644 --- a/theories/logrel/F_mu_ref_conc/examples/lock.v +++ b/theories/logrel/F_mu_ref_conc/examples/lock.v @@ -84,29 +84,29 @@ Section proof. Context `{cfgSG Σ}. Context `{heapIG Σ}. - Lemma steps_newlock E Ï j K : + Lemma steps_newlock E j K : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K newlock + spec_ctx ∗ j ⤇ fill K newlock ⊢ |={E}=> ∃ l, j ⤇ fill K (Loc l) ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE) "[#Hspec Hj]". - by iMod (step_alloc _ _ j K with "[Hj]") as "Hj"; eauto. + by iMod (step_alloc _ j K with "[Hj]") as "Hj"; eauto. Qed. Typeclasses Opaque newlock. Global Opaque newlock. - Lemma steps_acquire E Ï j K l : + Lemma steps_acquire E j K l : nclose specN ⊆ E → - spec_ctx Ï âˆ— l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App acquire (Loc l)) + spec_ctx ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App acquire (Loc l)) ⊢ |={E}=> j ⤇ fill K Unit ∗ l ↦ₛ (#â™v true). Proof. iIntros (HNE) "[#Hspec [Hl Hj]]". unfold acquire. - iMod (step_rec _ _ j K with "[Hj]") as "Hj"; eauto. done. - iMod (step_cas_suc _ _ j ((IfCtx _ _) :: K) + iMod (step_rec _ j K with "[Hj]") as "Hj"; eauto. done. + iMod (step_cas_suc _ j ((IfCtx _ _) :: K) _ _ _ _ _ _ _ _ _ with "[Hj Hl]") as "[Hj Hl]"; trivial. { simpl. iFrame "Hspec Hj Hl"; eauto. } - iMod (step_if_true _ _ j K _ _ _ with "[Hj]") as "Hj"; trivial. + iMod (step_if_true _ j K _ _ _ with "[Hj]") as "Hj"; trivial. { by iFrame. } by iIntros "!> {$Hj $Hl}". Unshelve. all:trivial. @@ -115,9 +115,9 @@ Section proof. Typeclasses Opaque acquire. Global Opaque acquire. - Lemma steps_release E Ï j K l b: + Lemma steps_release E j K l b: nclose specN ⊆ E → - spec_ctx Ï âˆ— l ↦ₛ (#â™v b) ∗ j ⤇ fill K (App release (Loc l)) + spec_ctx ∗ l ↦ₛ (#â™v b) ∗ j ⤇ fill K (App release (Loc l)) ⊢ |={E}=> j ⤇ fill K Unit ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE) "[#Hspec [Hl Hj]]". unfold release. @@ -129,26 +129,26 @@ Section proof. Typeclasses Opaque release. Global Opaque release. - Lemma steps_with_lock E Ï j K e l P Q v w: + Lemma steps_with_lock E j K e l P Q v w: nclose specN ⊆ E → (* (∀ f, e.[f] = e) (* e is a closed term *) → *) - (∀ K', spec_ctx Ï âˆ— P ∗ j ⤇ fill K' (App e (of_val w)) + (∀ K', spec_ctx ∗ P ∗ j ⤇ fill K' (App e (of_val w)) ⊢ |={E}=> j ⤇ fill K' (of_val v) ∗ Q) → - spec_ctx Ï âˆ— P ∗ l ↦ₛ (#â™v false) + spec_ctx ∗ P ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App (with_lock e (Loc l)) (of_val w)) ⊢ |={E}=> j ⤇ fill K (of_val v) ∗ Q ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE He) "[#Hspec [HP [Hl Hj]]]". iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (steps_acquire _ _ j (SeqCtx _ :: K) with "[$Hj Hl]") as "[Hj Hl]"; + iMod (steps_acquire _ j (SeqCtx _ :: K) with "[$Hj Hl]") as "[Hj Hl]"; auto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iMod (He (LetInCtx _ :: K) with "[$Hj HP]") as "[Hj HQ]"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (steps_release _ _ j (SeqCtx _ :: K) _ _ with "[$Hj $Hl]") + iMod (steps_release _ j (SeqCtx _ :: K) _ _ with "[$Hj $Hl]") as "[Hj Hl]"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. diff --git a/theories/logrel/F_mu_ref_conc/examples/stack/CG_stack.v b/theories/logrel/F_mu_ref_conc/examples/stack/CG_stack.v index d6a5b42b..07444d11 100644 --- a/theories/logrel/F_mu_ref_conc/examples/stack/CG_stack.v +++ b/theories/logrel/F_mu_ref_conc/examples/stack/CG_stack.v @@ -81,18 +81,18 @@ Section CG_Stack. Hint Rewrite CG_push_subst : autosubst. - Lemma steps_CG_push E Ï j K st v w : + Lemma steps_CG_push E j K st v w : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ v ∗ j ⤇ fill K (App (CG_push (Loc st)) (of_val w)) + spec_ctx ∗ st ↦ₛ v ∗ j ⤇ fill K (App (CG_push (Loc st)) (of_val w)) ⊢ |={E}=> j ⤇ fill K Unit ∗ st ↦ₛ FoldV (InjRV (PairV w v)). Proof. intros HNE. iIntros "[#Hspec [Hx Hj]]". unfold CG_push. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (step_load _ _ j (PairRCtx _ :: InjRCtx :: FoldCtx :: StoreRCtx (LocV _) :: K) + iMod (step_load _ j (PairRCtx _ :: InjRCtx :: FoldCtx :: StoreRCtx (LocV _) :: K) with "[$Hj $Hx]") as "[Hj Hx]"; eauto. simpl. - iMod (step_store _ _ j K with "[$Hj $Hx]") as "[Hj Hx]"; eauto. + iMod (step_store _ j K with "[$Hj $Hx]") as "[Hj Hx]"; eauto. { rewrite /= !to_of_val //. } iModIntro. by iFrame. Qed. @@ -124,14 +124,14 @@ Section CG_Stack. Hint Rewrite CG_locked_push_subst : autosubst. - Lemma steps_CG_locked_push E Ï j K st w v l : + Lemma steps_CG_locked_push E j K st w v l : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ v ∗ l ↦ₛ (#â™v false) + spec_ctx ∗ st ↦ₛ v ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App (CG_locked_push (Loc st) (Loc l)) (of_val w)) ⊢ |={E}=> j ⤇ fill K Unit ∗ st ↦ₛ FoldV (InjRV (PairV w v)) ∗ l ↦ₛ (#â™v false). Proof. intros HNE. iIntros "[#Hspec [Hx [Hl Hj]]]". unfold CG_locked_push. - iMod (steps_with_lock _ _ _ _ _ _ (st ↦ₛ v)%I _ UnitV with "[$Hj $Hx $Hl]") + iMod (steps_with_lock _ _ _ _ _ (st ↦ₛ v)%I _ UnitV with "[$Hj $Hx $Hl]") as "Hj"; auto. iIntros (K') "[#Hspec Hxj]". iApply steps_CG_push; first done. by iFrame. @@ -164,46 +164,46 @@ Section CG_Stack. Hint Rewrite CG_pop_subst : autosubst. - Lemma steps_CG_pop_suc E Ï j K st v w : + Lemma steps_CG_pop_suc E j K st v w : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ FoldV (InjRV (PairV w v)) ∗ + spec_ctx ∗ st ↦ₛ FoldV (InjRV (PairV w v)) ∗ j ⤇ fill K (App (CG_pop (Loc st)) Unit) ⊢ |={E}=> j ⤇ fill K (InjR (of_val w)) ∗ st ↦ₛ v. Proof. intros HNE. iIntros "[#Hspec [Hx Hj]]". unfold CG_pop. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (step_load _ _ _ (UnfoldCtx :: CaseCtx _ _ :: K) with "[$Hj $Hx]") + iMod (step_load _ _ (UnfoldCtx :: CaseCtx _ _ :: K) with "[$Hj $Hx]") as "[Hj Hx]"; eauto. simpl. - iMod (do_step_pure _ _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. + iMod (do_step_pure _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (do_step_pure _ _ _ (StoreRCtx (LocV _) :: SeqCtx _ :: K) + iMod (do_step_pure _ _ (StoreRCtx (LocV _) :: SeqCtx _ :: K) with "[$Hj]") as "Hj"; eauto. simpl. - iMod (step_store _ _ j (SeqCtx _ :: K) with "[$Hj $Hx]") as "[Hj Hx]"; + iMod (step_store _ j (SeqCtx _ :: K) with "[$Hj $Hx]") as "[Hj Hx]"; eauto using to_of_val. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. - iMod (do_step_pure _ _ _ (InjRCtx :: K) with "[$Hj]") as "Hj"; eauto. + iMod (do_step_pure _ _ (InjRCtx :: K) with "[$Hj]") as "Hj"; eauto. simpl. by iFrame "Hj Hx". Qed. - Lemma steps_CG_pop_fail E Ï j K st : + Lemma steps_CG_pop_fail E j K st : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ FoldV (InjLV UnitV) ∗ + spec_ctx ∗ st ↦ₛ FoldV (InjLV UnitV) ∗ j ⤇ fill K (App (CG_pop (Loc st)) Unit) ⊢ |={E}=> j ⤇ fill K (InjL Unit) ∗ st ↦ₛ FoldV (InjLV UnitV). Proof. iIntros (HNE) "[#Hspec [Hx Hj]]". unfold CG_pop. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (step_load _ _ j (UnfoldCtx :: CaseCtx _ _ :: K) + iMod (step_load _ j (UnfoldCtx :: CaseCtx _ _ :: K) _ _ _ with "[$Hj $Hx]") as "[Hj Hx]"; eauto. - iMod (do_step_pure _ _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. + iMod (do_step_pure _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. by iFrame "Hj Hx"; trivial. @@ -237,28 +237,28 @@ Section CG_Stack. Hint Rewrite CG_locked_pop_subst : autosubst. - Lemma steps_CG_locked_pop_suc E Ï j K st v w l : + Lemma steps_CG_locked_pop_suc E j K st v w l : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ FoldV (InjRV (PairV w v)) ∗ l ↦ₛ (#â™v false) + spec_ctx ∗ st ↦ₛ FoldV (InjRV (PairV w v)) ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App (CG_locked_pop (Loc st) (Loc l)) Unit) ⊢ |={E}=> j ⤇ fill K (InjR (of_val w)) ∗ st ↦ₛ v ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE) "[#Hspec [Hx [Hl Hj]]]". unfold CG_locked_pop. - iMod (steps_with_lock _ _ _ _ _ _ (st ↦ₛ FoldV (InjRV (PairV w v)))%I + iMod (steps_with_lock _ _ _ _ _ (st ↦ₛ FoldV (InjRV (PairV w v)))%I _ (InjRV w) UnitV with "[$Hj $Hx $Hl]") as "Hj"; eauto. iIntros (K') "[#Hspec Hxj]". iApply steps_CG_pop_suc; eauto. Qed. - Lemma steps_CG_locked_pop_fail E Ï j K st l : + Lemma steps_CG_locked_pop_fail E j K st l : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ FoldV (InjLV UnitV) ∗ l ↦ₛ (#â™v false) + spec_ctx ∗ st ↦ₛ FoldV (InjLV UnitV) ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App (CG_locked_pop (Loc st) (Loc l)) Unit) ⊢ |={E}=> j ⤇ fill K (InjL Unit) ∗ st ↦ₛ FoldV (InjLV UnitV) ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE) "[#Hspec [Hx [Hl Hj]]]". unfold CG_locked_pop. - iMod (steps_with_lock _ _ _ _ _ _ (st ↦ₛ FoldV (InjLV UnitV))%I _ + iMod (steps_with_lock _ _ _ _ _ (st ↦ₛ FoldV (InjLV UnitV))%I _ (InjLV UnitV) UnitV with "[$Hj $Hx $Hl]") as "Hj"; eauto. iIntros (K') "[#Hspec Hxj] /=". @@ -293,14 +293,14 @@ Section CG_Stack. Hint Rewrite CG_snap_subst : autosubst. - Lemma steps_CG_snap E Ï j K st v l : + Lemma steps_CG_snap E j K st v l : nclose specN ⊆ E → - spec_ctx Ï âˆ— st ↦ₛ v ∗ l ↦ₛ (#â™v false) + spec_ctx ∗ st ↦ₛ v ∗ l ↦ₛ (#â™v false) ∗ j ⤇ fill K (App (CG_snap (Loc st) (Loc l)) Unit) ⊢ |={E}=> j ⤇ (fill K (of_val v)) ∗ st ↦ₛ v ∗ l ↦ₛ (#â™v false). Proof. iIntros (HNE) "[#Hspec [Hx [Hl Hj]]]". unfold CG_snap. - iMod (steps_with_lock _ _ _ _ _ _ (st ↦ₛ v)%I _ v UnitV + iMod (steps_with_lock _ _ _ _ _ (st ↦ₛ v)%I _ v UnitV with "[$Hj $Hx $Hl]") as "Hj"; eauto. iIntros (K') "[#Hspec [Hx Hj]]". iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. @@ -353,9 +353,9 @@ Section CG_Stack. Hint Rewrite CG_iter_subst : autosubst. - Lemma steps_CG_iter E Ï j K f v w : + Lemma steps_CG_iter E j K f v w : nclose specN ⊆ E → - spec_ctx Ï + spec_ctx ∗ j ⤇ fill K (App (CG_iter (of_val f)) (Fold (InjR (Pair (of_val w) (of_val v))))) ⊢ |={E}=> @@ -366,22 +366,22 @@ Section CG_Stack. iIntros (HNE) "[#Hspec Hj]". unfold CG_iter. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (do_step_pure _ _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. + iMod (do_step_pure _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. iAsimpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iAsimpl. - iMod (do_step_pure _ _ _ (AppRCtx f :: SeqCtx _ :: K) with "[$Hj]") + iMod (do_step_pure _ _ (AppRCtx f :: SeqCtx _ :: K) with "[$Hj]") as "Hj"; eauto. Qed. - Lemma steps_CG_iter_end E Ï j K f : + Lemma steps_CG_iter_end E j K f : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (App (CG_iter (of_val f)) (Fold (InjL Unit))) + spec_ctx ∗ j ⤇ fill K (App (CG_iter (of_val f)) (Fold (InjL Unit))) ⊢ |={E}=> j ⤇ fill K Unit. Proof. iIntros (HNE) "[#Hspec Hj]". unfold CG_iter. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. - iMod (do_step_pure _ _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. + iMod (do_step_pure _ _ (CaseCtx _ _ :: K) with "[$Hj]") as "Hj"; eauto. iAsimpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. Qed. diff --git a/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v b/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v index 2c4883bc..998a8e72 100644 --- a/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v +++ b/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v @@ -20,7 +20,7 @@ Section Stack_refinement. (TArrow (TArrow (TVar 0) TUnit) TUnit)). Proof. (* executing the preambles *) - iIntros (Δ [|??] Ï ?) "#[Hspec HΓ]"; iIntros (j K) "Hj"; last first. + iIntros (Δ [|??] ?) "#[Hspec HΓ]"; iIntros (j K) "Hj"; last first. { iDestruct (interp_env_length with "HΓ") as %[=]. } iClear "HΓ". cbn -[FG_stack CG_stack]. rewrite ?empty_env_subst /CG_stack /FG_stack. @@ -29,11 +29,11 @@ Section Stack_refinement. clear j K. iAlways. iIntros (Ï„i) "%". iIntros (j K) "Hj /=". iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. iApply wp_pure_step_later; auto. iNext. - iMod (steps_newlock _ _ j (LetInCtx _ :: K) with "[$Hj]") + iMod (steps_newlock _ j (LetInCtx _ :: K) with "[$Hj]") as (l) "[Hj Hl]"; eauto. - iMod (do_step_pure _ _ j K with "[$Hj]") as "Hj"; eauto. + iMod (do_step_pure _ j K with "[$Hj]") as "Hj"; eauto. simpl. iAsimpl. - iMod (step_alloc _ _ j (LetInCtx _ :: K) with "[$Hj]") + iMod (step_alloc _ j (LetInCtx _ :: K) with "[$Hj]") as (stk') "[Hj Hstk']"; eauto. simpl. iMod (do_step_pure with "[$Hj]") as "Hj"; eauto. @@ -110,7 +110,7 @@ Section Stack_refinement. * (* CAS succeeds *) (* In this case, the specification pushes *) iMod "Hstk'". iMod "Hl". - iMod (steps_CG_locked_push _ _ j K with "[Hj Hl Hstk']") + iMod (steps_CG_locked_push _ j K with "[Hj Hl Hstk']") as "[Hj [Hstk' Hl]]"; first solve_ndisj. { rewrite CG_locked_push_of_val. by iFrame "Hspec Hstk' Hj". } iApply (wp_cas_suc with "Hstk"); auto. @@ -250,7 +250,7 @@ Section Stack_refinement. iApply (wp_bind (fill [FoldCtx; AppRCtx _])); iApply wp_wand_l; iSplitR; [iIntros (w) "Hw"; iExact "Hw"|]. iInv stackN as (istk3 w h) "[Hoe [>Hstk' [>Hstk [#HLK >Hl]]]]" "Hclose". - iMod (steps_CG_snap _ _ _ (AppRCtx _ :: K) + iMod (steps_CG_snap _ _ (AppRCtx _ :: K) with "[Hstk' Hj Hl]") as "[Hj [Hstk' Hl]]"; first solve_ndisj. { rewrite ?fill_app. simpl. by iFrame "Hspec Hstk' Hl Hj". } iApply (wp_load with "[$Hstk]"). iNext. iIntros "Hstk". @@ -308,7 +308,7 @@ Section Stack_refinement. iAsimpl. replace (CG_iter (of_val f2)) with (of_val (CG_iterV (of_val f2))) by (by rewrite CG_iter_of_val). - iMod (step_snd _ _ _ (AppRCtx _ :: K) with "[$Hspec Hj]") as "Hj"; + iMod (step_snd _ _ (AppRCtx _ :: K) with "[$Hspec Hj]") as "Hj"; [| | |simpl; by iFrame "Hj"|]; rewrite ?to_of_val; auto. iApply wp_pure_step_later; trivial. iNext. simpl. diff --git a/theories/logrel/F_mu_ref_conc/fundamental_binary.v b/theories/logrel/F_mu_ref_conc/fundamental_binary.v index cb8a0fd8..b683aa59 100644 --- a/theories/logrel/F_mu_ref_conc/fundamental_binary.v +++ b/theories/logrel/F_mu_ref_conc/fundamental_binary.v @@ -8,9 +8,9 @@ Section bin_log_def. Context `{heapIG Σ, cfgSG Σ}. Notation D := (prodC valC valC -n> iProp Σ). - Definition bin_log_related (Γ : list type) (e e' : expr) (Ï„ : type) := ∀ Δ vvs Ï, + Definition bin_log_related (Γ : list type) (e e' : expr) (Ï„ : type) := ∀ Δ vvs, env_Persistent Δ → - spec_ctx Ï âˆ§ + spec_ctx ∧ ⟦ Γ ⟧* Δ vvs ⊢ ⟦ Ï„ ⟧ₑ Δ (e.[env_subst (vvs.*1)], e'.[env_subst (vvs.*2)]). End bin_log_def. @@ -32,13 +32,13 @@ Section fundamental. iIntros (v); iDestruct 1 as (w) Hv; simpl. (* Put all quantifiers at the outer level *) - Lemma bin_log_related_alt {Γ e e' Ï„} : Γ ⊨ e ≤log≤ e' : Ï„ → ∀ Δ vvs Ï j K, + Lemma bin_log_related_alt {Γ e e' Ï„} : Γ ⊨ e ≤log≤ e' : Ï„ → ∀ Δ vvs j K, env_Persistent Δ → - spec_ctx Ï âˆ— ⟦ Γ ⟧* Δ vvs ∗ j ⤇ fill K (e'.[env_subst (vvs.*2)]) + spec_ctx ∗ ⟦ Γ ⟧* Δ vvs ∗ j ⤇ fill K (e'.[env_subst (vvs.*2)]) ⊢ WP e.[env_subst (vvs.*1)] {{ v, ∃ v', j ⤇ fill K (of_val v') ∗ interp Ï„ Δ (v, v') }}. Proof. - iIntros (Hlog Δ vvs Ï j K ?) "(#Hs & HΓ & Hj)". + iIntros (Hlog Δ vvs j K ?) "(#Hs & HΓ & Hj)". iApply (Hlog with "[HΓ]"); iFrame; eauto. Qed. @@ -47,7 +47,7 @@ Section fundamental. Lemma bin_log_related_var Γ x Ï„ : Γ !! x = Some Ï„ → Γ ⊨ Var x ≤log≤ Var x : Ï„. Proof. - iIntros (? Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (? Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iDestruct (interp_env_Some_l with "HΓ") as ([v v']) "[Heq ?]"; first done. iDestruct "Heq" as %Heq. erewrite !env_subst_lookup; rewrite ?list_lookup_fmap ?Heq; eauto. @@ -56,19 +56,19 @@ Section fundamental. Lemma bin_log_related_unit Γ : Γ ⊨ Unit ≤log≤ Unit : TUnit. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply wp_value. iExists UnitV; eauto. Qed. Lemma bin_log_related_nat Γ n : Γ ⊨ #n n ≤log≤ #n n : TNat. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply wp_value. iExists (#nv _); eauto. Qed. Lemma bin_log_related_bool Γ b : Γ ⊨ #â™ b ≤log≤ #â™ b : TBool. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply wp_value. iExists (#â™v _); eauto. Qed. @@ -77,11 +77,11 @@ Section fundamental. (IHHtyped2 : Γ ⊨ e2 ≤log≤ e2' : Ï„2) : Γ ⊨ Pair e1 e2 ≤log≤ Pair e1' e2' : TProd Ï„1 Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (PairLCtx e2.[env_subst _]) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((PairLCtx e2'.[env_subst _]) :: K)). + ('`IHHtyped1 _ _ j ((PairLCtx e2'.[env_subst _]) :: K)). smart_wp_bind (PairRCtx v) w w' "[Hw #Hiw]" - ('`IHHtyped2 _ _ _ j ((PairRCtx v') :: K)). + ('`IHHtyped2 _ _ j ((PairRCtx v') :: K)). iApply wp_value. iExists (PairV v' w'); iFrame "Hw". iExists (v, v'), (w, w'); simpl; repeat iSplit; trivial. Qed. @@ -90,8 +90,8 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : TProd Ï„1 Ï„2) : Γ ⊨ Fst e ≤log≤ Fst e' : Ï„1. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". - smart_wp_bind (FstCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ _ j (FstCtx :: K)); cbn. + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + smart_wp_bind (FstCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ j (FstCtx :: K)); cbn. iDestruct "Hiv" as ([w1 w1'] [w2 w2']) "#[% [Hw1 Hw2]]"; simplify_eq. iApply wp_pure_step_later; eauto. iNext. iMod (step_fst with "[Hs Hv]") as "Hw"; eauto. @@ -102,8 +102,8 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : TProd Ï„1 Ï„2) : Γ ⊨ Snd e ≤log≤ Snd e' : Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". - smart_wp_bind (SndCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ _ j (SndCtx :: K)); cbn. + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + smart_wp_bind (SndCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ j (SndCtx :: K)); cbn. iDestruct "Hiv" as ([w1 w1'] [w2 w2']) "#[% [Hw1 Hw2]]"; simplify_eq. iApply wp_pure_step_later; eauto. iNext. iMod (step_snd with "[Hs Hv]") as "Hw"; eauto. @@ -114,9 +114,9 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : Ï„1) : Γ ⊨ InjL e ≤log≤ InjL e' : (TSum Ï„1 Ï„2). Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (InjLCtx) v v' "[Hv #Hiv]" - ('`IHHtyped _ _ _ j (InjLCtx :: K)); cbn. + ('`IHHtyped _ _ j (InjLCtx :: K)); cbn. iApply wp_value. iExists (InjLV v'); iFrame "Hv". iLeft; iExists (_,_); eauto 10. Qed. @@ -125,9 +125,9 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : Ï„2) : Γ ⊨ InjR e ≤log≤ InjR e' : TSum Ï„1 Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (InjRCtx) v v' "[Hv #Hiv]" - ('`IHHtyped _ _ _ j (InjRCtx :: K)); cbn. + ('`IHHtyped _ _ j (InjRCtx :: K)); cbn. iApply wp_value. iExists (InjRV v'); iFrame "Hv". iRight; iExists (_,_); eauto 10. Qed. @@ -142,10 +142,10 @@ Section fundamental. (IHHtyped3 : Ï„2 :: Γ ⊨ e2 ≤log≤ e2' : Ï„3) : Γ ⊨ Case e0 e1 e2 ≤log≤ Case e0' e1' e2' : Ï„3. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iDestruct (interp_env_length with "HΓ") as %?. smart_wp_bind (CaseCtx _ _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((CaseCtx _ _) :: K)); cbn. + ('`IHHtyped1 _ _ j ((CaseCtx _ _) :: K)); cbn. iDestruct "Hiv" as "[Hiv|Hiv]"; iDestruct "Hiv" as ([w w']) "[% Hw]"; simplify_eq. - iApply fupd_wp. @@ -168,14 +168,14 @@ Section fundamental. (IHHtyped3 : Γ ⊨ e2 ≤log≤ e2' : Ï„) : Γ ⊨ If e0 e1 e2 ≤log≤ If e0' e1' e2' : Ï„. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (IfCtx _ _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((IfCtx _ _) :: K)); cbn. + ('`IHHtyped1 _ _ j ((IfCtx _ _) :: K)); cbn. iDestruct "Hiv" as ([]) "[% %]"; simplify_eq/=; iApply fupd_wp. - - iMod (step_if_true _ _ j K with "[-]") as "Hz"; eauto. + - iMod (step_if_true _ j K with "[-]") as "Hz"; eauto. iApply wp_pure_step_later; auto. iModIntro. iNext. iApply '`IHHtyped2; eauto. - - iMod (step_if_false _ _ j K with "[-]") as "Hz"; eauto. + - iMod (step_if_false _ j K with "[-]") as "Hz"; eauto. iApply wp_pure_step_later; auto. iModIntro. iNext. iApply '`IHHtyped3; eauto. Qed. @@ -185,15 +185,15 @@ Section fundamental. (IHHtyped2 : Γ ⊨ e2 ≤log≤ e2' : TNat) : Γ ⊨ BinOp op e1 e2 ≤log≤ BinOp op e1' e2' : binop_res_type op. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (BinOpLCtx _ _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((BinOpLCtx _ _) :: K)); cbn. + ('`IHHtyped1 _ _ j ((BinOpLCtx _ _) :: K)); cbn. smart_wp_bind (BinOpRCtx _ _) w w' "[Hw #Hiw]" - ('`IHHtyped2 _ _ _ j ((BinOpRCtx _ _) :: K)); cbn. + ('`IHHtyped2 _ _ j ((BinOpRCtx _ _) :: K)); cbn. iDestruct "Hiv" as (n) "[% %]"; simplify_eq/=. iDestruct "Hiw" as (n') "[% %]"; simplify_eq/=. iApply fupd_wp. - iMod (step_nat_binop _ _ j K with "[-]") as "Hz"; eauto. + iMod (step_nat_binop _ j K with "[-]") as "Hz"; eauto. iApply wp_pure_step_later; auto. iModIntro. iNext. iApply wp_value. iExists _; iSplitL; eauto. destruct op; simpl; try destruct eq_nat_dec; try destruct le_dec; @@ -206,13 +206,13 @@ Section fundamental. (IHHtyped : TArrow Ï„1 Ï„2 :: Ï„1 :: Γ ⊨ e ≤log≤ e' : Ï„2) : Γ ⊨ Rec e ≤log≤ Rec e' : TArrow Ï„1 Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply wp_value. iExists (RecV _). iIntros "{$Hj} !#". iLöb as "IH". iIntros ([v v']) "#Hiv". iIntros (j' K') "Hj". iDestruct (interp_env_length with "HΓ") as %?. iApply wp_pure_step_later; auto 1 using to_of_val. iNext. iApply fupd_wp. - iMod (step_rec _ _ j' K' _ (of_val v') v' with "[-]") as "Hz"; eauto. + iMod (step_rec _ j' K' _ (of_val v') v' with "[-]") as "Hz"; eauto. asimpl. change (Rec ?e) with (of_val (RecV e)). iApply ('`IHHtyped _ ((_,_) :: (v,v') :: vvs)); repeat iSplit; eauto. iModIntro. @@ -225,13 +225,13 @@ Section fundamental. (IHHtyped : Ï„1 :: Γ ⊨ e ≤log≤ e' : Ï„2) : Γ ⊨ Lam e ≤log≤ Lam e' : TArrow Ï„1 Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply wp_value. iExists (LamV _). iIntros "{$Hj} !#". iIntros ([v v']) "#Hiv". iIntros (j' K') "Hj". iDestruct (interp_env_length with "HΓ") as %?. iApply wp_pure_step_later; auto 1 using to_of_val. iNext. iApply fupd_wp. - iMod (step_lam _ _ j' K' _ (of_val v') v' with "[-]") as "Hz"; eauto. + iMod (step_lam _ j' K' _ (of_val v') v' with "[-]") as "Hz"; eauto. asimpl. iFrame "#". change (Lam ?e) with (of_val (LamV e)). iApply ('`IHHtyped _ ((v,v') :: vvs)); repeat iSplit; eauto. iModIntro. @@ -245,11 +245,11 @@ Section fundamental. (IHHtyped2 : Ï„1 :: Γ ⊨ e2 ≤log≤ e2' : Ï„2) : Γ ⊨ LetIn e1 e2 ≤log≤ LetIn e1' e2': Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iDestruct (interp_env_length with "HΓ") as %?. smart_wp_bind (LetInCtx _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((LetInCtx _) :: K)); cbn. - iMod (step_letin _ _ j K with "[-]") as "Hz"; eauto. + ('`IHHtyped1 _ _ j ((LetInCtx _) :: K)); cbn. + iMod (step_letin _ j K with "[-]") as "Hz"; eauto. iApply wp_pure_step_later; auto. iModIntro. asimpl. iApply ('`IHHtyped2 _ ((v, v') :: vvs)); repeat iSplit; eauto. @@ -261,11 +261,11 @@ Section fundamental. (IHHtyped2 : Γ ⊨ e2 ≤log≤ e2' : Ï„2) : Γ ⊨ Seq e1 e2 ≤log≤ Seq e1' e2': Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iDestruct (interp_env_length with "HΓ") as %?. smart_wp_bind (SeqCtx _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((SeqCtx _) :: K)); cbn. - iMod (step_seq _ _ j K with "[-]") as "Hz"; eauto. + ('`IHHtyped1 _ _ j ((SeqCtx _) :: K)); cbn. + iMod (step_seq _ j K with "[-]") as "Hz"; eauto. iApply wp_pure_step_later; auto. iModIntro. asimpl. iApply '`IHHtyped2; repeat iSplit; eauto. @@ -276,11 +276,11 @@ Section fundamental. (IHHtyped2 : Γ ⊨ e2 ≤log≤ e2' : Ï„1) : Γ ⊨ App e1 e2 ≤log≤ App e1' e2' : Ï„2. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (AppLCtx (e2.[env_subst (vvs.*1)])) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j (((AppLCtx (e2'.[env_subst (vvs.*2)]))) :: K)); cbn. + ('`IHHtyped1 _ _ j (((AppLCtx (e2'.[env_subst (vvs.*2)]))) :: K)); cbn. smart_wp_bind (AppRCtx v) w w' "[Hw #Hiw]" - ('`IHHtyped2 _ _ _ j ((AppRCtx v') :: K)); cbn. + ('`IHHtyped2 _ _ j ((AppRCtx v') :: K)); cbn. iApply ("Hiv" $! (w, w') with "Hiw"); simpl; eauto. Qed. @@ -288,12 +288,12 @@ Section fundamental. (IHHtyped : (subst (ren (+1)) <$> Γ) ⊨ e ≤log≤ e' : Ï„) : Γ ⊨ TLam e ≤log≤ TLam e' : TForall Ï„. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply wp_value. iExists (TLamV _). iIntros "{$Hj} /= !#"; iIntros (Ï„i ? j' K') "Hv /=". iApply wp_pure_step_later; auto. iNext. iApply fupd_wp. - iMod (step_tlam _ _ j' K' (e'.[env_subst (vvs.*2)]) with "[-]") as "Hz"; eauto. + iMod (step_tlam _ j' K' (e'.[env_subst (vvs.*2)]) with "[-]") as "Hz"; eauto. iApply '`IHHtyped; repeat iSplit; eauto. iModIntro. rewrite interp_env_ren; auto. Qed. @@ -301,9 +301,9 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : TForall Ï„) : Γ ⊨ TApp e ≤log≤ TApp e' : Ï„.[Ï„'/]. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (TAppCtx) v v' "[Hj #Hv]" - ('`IHHtyped _ _ _ j (TAppCtx :: K)); cbn. + ('`IHHtyped _ _ j (TAppCtx :: K)); cbn. iApply wp_wand_r; iSplitL. { iSpecialize ("Hv" $! (interp Ï„' Δ) with "[#]"); [iPureIntro; apply _|]. iApply "Hv"; eauto. } @@ -315,9 +315,9 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : Ï„.[(TRec Ï„)/]) : Γ ⊨ Fold e ≤log≤ Fold e' : TRec Ï„. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply (wp_bind (fill [FoldCtx])); iApply wp_wand_l; iSplitR; - [|iApply ('`IHHtyped _ _ _ j (FoldCtx :: K)); + [|iApply ('`IHHtyped _ _ j (FoldCtx :: K)); simpl; repeat iSplitR; trivial]. iIntros (v); iDestruct 1 as (w) "[Hv #Hiv]". iApply wp_value. iExists (FoldV w); iFrame "Hv". @@ -329,16 +329,16 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : TRec Ï„) : Γ ⊨ Unfold e ≤log≤ Unfold e' : Ï„.[(TRec Ï„)/]. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply (wp_bind (fill [UnfoldCtx])); iApply wp_wand_l; iSplitR; - [|iApply ('`IHHtyped _ _ _ j (UnfoldCtx :: K)); + [|iApply ('`IHHtyped _ _ j (UnfoldCtx :: K)); simpl; repeat iSplitR; trivial]. iIntros (v). iDestruct 1 as (v') "[Hw #Hiw]". rewrite /= fixpoint_interp_rec1_eq /=. change (fixpoint _) with (interp (TRec Ï„) Δ). iDestruct "Hiw" as ([w w']) "#[% Hiz]"; simplify_eq/=. iApply fupd_wp. - iMod (step_Fold _ _ j K (of_val w') w' with "[-]") as "Hz"; eauto. + iMod (step_Fold _ j K (of_val w') w' with "[-]") as "Hz"; eauto. iApply wp_pure_step_later; auto. iModIntro. iApply wp_value. iNext; iExists _; iFrame "Hz". by rewrite -interp_subst. @@ -348,22 +348,22 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : TUnit) : Γ ⊨ Fork e ≤log≤ Fork e' : TUnit. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". iApply fupd_wp. - iMod (step_fork _ _ j K with "[-]") as (j') "[Hj Hj']"; eauto. + iMod (step_fork _ j K with "[-]") as (j') "[Hj Hj']"; eauto. iApply wp_fork; iModIntro. rewrite -bi.later_sep. iNext; iSplitL "Hj". - iExists UnitV; eauto. - - iApply wp_wand_l; iSplitR; [|iApply ('`IHHtyped _ _ _ _ [])]; eauto. + - iApply wp_wand_l; iSplitR; [|iApply ('`IHHtyped _ _ _ [])]; eauto. Qed. Lemma bin_log_related_alloc Γ e e' Ï„ (IHHtyped : Γ ⊨ e ≤log≤ e' : Ï„) : Γ ⊨ Alloc e ≤log≤ Alloc e' : Tref Ï„. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". - smart_wp_bind (AllocCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ _ j (AllocCtx :: K)). + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + smart_wp_bind (AllocCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ j (AllocCtx :: K)). iApply fupd_wp. - iMod (step_alloc _ _ j K (of_val v') v' with "[-]") as (l') "[Hj Hl]"; eauto. + iMod (step_alloc _ j K (of_val v') v' with "[-]") as (l') "[Hj Hl]"; eauto. iApply wp_atomic; eauto. iApply wp_alloc; eauto. do 2 iModIntro. iNext. iIntros (l) "Hl'". @@ -377,8 +377,8 @@ Section fundamental. (IHHtyped : Γ ⊨ e ≤log≤ e' : (Tref Ï„)) : Γ ⊨ Load e ≤log≤ Load e' : Ï„. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". - smart_wp_bind (LoadCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ _ j (LoadCtx :: K)). + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + smart_wp_bind (LoadCtx) v v' "[Hv #Hiv]" ('`IHHtyped _ _ j (LoadCtx :: K)). iDestruct "Hiv" as ([l l']) "[% Hinv]"; simplify_eq/=. iApply wp_atomic; eauto. iInv (logN .@ (l,l')) as ([w w']) "[Hw1 [>Hw2 #Hw]]" "Hclose"; simpl. @@ -398,11 +398,11 @@ Section fundamental. (IHHtyped2 : Γ ⊨ e2 ≤log≤ e2' : Ï„) : Γ ⊨ Store e1 e2 ≤log≤ Store e1' e2' : TUnit. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (StoreLCtx _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((StoreLCtx _) :: K)). + ('`IHHtyped1 _ _ j ((StoreLCtx _) :: K)). smart_wp_bind (StoreRCtx _) w w' "[Hw #Hiw]" - ('`IHHtyped2 _ _ _ j ((StoreRCtx _) :: K)). + ('`IHHtyped2 _ _ j ((StoreRCtx _) :: K)). iDestruct "Hiv" as ([l l']) "[% Hinv]"; simplify_eq/=. iApply wp_atomic; eauto. iInv (logN .@ (l,l')) as ([v v']) "[Hv1 [>Hv2 #Hv]]" "Hclose". @@ -423,13 +423,13 @@ Section fundamental. (IHHtyped3 : Γ ⊨ e3 ≤log≤ e3' : Ï„) : Γ ⊨ CAS e1 e2 e3 ≤log≤ CAS e1' e2' e3' : TBool. Proof. - iIntros (Δ vvs Ï ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". + iIntros (Δ vvs ?) "#(Hs & HΓ)"; iIntros (j K) "Hj /=". smart_wp_bind (CasLCtx _ _) v v' "[Hv #Hiv]" - ('`IHHtyped1 _ _ _ j ((CasLCtx _ _) :: K)). + ('`IHHtyped1 _ _ j ((CasLCtx _ _) :: K)). smart_wp_bind (CasMCtx _ _) w w' "[Hw #Hiw]" - ('`IHHtyped2 _ _ _ j ((CasMCtx _ _) :: K)). + ('`IHHtyped2 _ _ j ((CasMCtx _ _) :: K)). smart_wp_bind (CasRCtx _ _) u u' "[Hu #Hiu]" - ('`IHHtyped3 _ _ _ j ((CasRCtx _ _) :: K)). + ('`IHHtyped3 _ _ j ((CasRCtx _ _) :: K)). iDestruct "Hiv" as ([l l']) "[% Hinv]"; simplify_eq/=. iApply wp_atomic; eauto. iMod (interp_ref_open' _ _ l l' with "[]") as diff --git a/theories/logrel/F_mu_ref_conc/rules_binary.v b/theories/logrel/F_mu_ref_conc/rules_binary.v index 1e939ff1..7c2449c0 100644 --- a/theories/logrel/F_mu_ref_conc/rules_binary.v +++ b/theories/logrel/F_mu_ref_conc/rules_binary.v @@ -33,12 +33,12 @@ Section definitionsS. Definition spec_inv (Ï : cfg F_mu_ref_conc_lang) : iProp Σ := (∃ tp σ, own cfg_name (â— (to_tpool tp, to_gen_heap σ)) ∗ ⌜rtc erased_step Ï (tp,σ)âŒ)%I. - Definition spec_ctx (Ï : cfg F_mu_ref_conc_lang) : iProp Σ := - inv specN (spec_inv Ï). + Definition spec_ctx : iProp Σ := + (∃ Ï, inv specN (spec_inv Ï))%I. Global Instance heapS_mapsto_timeless l q v : Timeless (heapS_mapsto l q v). Proof. apply _. Qed. - Global Instance spec_ctx_persistent Ï : Persistent (spec_ctx Ï). + Global Instance spec_ctx_persistent : Persistent spec_ctx. Proof. apply _. Qed. End definitionsS. Typeclasses Opaque heapS_mapsto tpool_mapsto. @@ -164,13 +164,14 @@ Section cfg. exists z; split; eauto using nsteps_l. Qed. - Lemma step_pure' E Ï j K e e' (P : Prop) n : + Lemma step_pure' E j K e e' (P : Prop) n : P → PureExec P n e e' → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K e ={E}=∗ j ⤇ fill K e'. + spec_ctx ∗ j ⤇ fill K e ={E}=∗ j ⤇ fill K e'. Proof. - iIntros (HP Hex ?) "[#Hspec Hj]". rewrite /spec_ctx /tpool_mapsto. + iIntros (HP Hex ?) "[#Hinv Hj]". iDestruct "Hinv" as (Ï) "Hspec". + rewrite /spec_ctx /tpool_mapsto. iInv specN as (tp σ) ">[Hown Hrtc]" "Hclose". iDestruct "Hrtc" as %Hrtc. iDestruct (own_valid_2 with "Hown Hj") @@ -208,16 +209,17 @@ Section cfg. Qed. - Lemma do_step_pure E Ï j K e e' `{!PureExec True 1 e e'}: + Lemma do_step_pure E j K e e' `{!PureExec True 1 e e'}: nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K e ={E}=∗ j ⤇ fill K e'. + spec_ctx ∗ j ⤇ fill K e ={E}=∗ j ⤇ fill K e'. Proof. by eapply step_pure'; last eauto. Qed. - Lemma step_alloc E Ï j K e v: + Lemma step_alloc E j K e v: to_val e = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Alloc e) ={E}=∗ ∃ l, j ⤇ fill K (Loc l) ∗ l ↦ₛ v. + spec_ctx ∗ j ⤇ fill K (Alloc e) ={E}=∗ ∃ l, j ⤇ fill K (Loc l) ∗ l ↦ₛ v. Proof. - iIntros (??) "[#Hinv Hj]". rewrite /spec_ctx /tpool_mapsto. + iIntros (??) "[#Hinv Hj]". iDestruct "Hinv" as (Ï) "Hinv". + rewrite /spec_ctx /tpool_mapsto. iInv specN as (tp σ) ">[Hown %]" "Hclose". destruct (exist_fresh (dom (gset positive) σ)) as [l Hl%not_elem_of_dom]. iDestruct (own_valid_2 with "Hown Hj") @@ -235,12 +237,12 @@ Section cfg. eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto. Qed. - Lemma step_load E Ï j K l q v: + Lemma step_load E j K l q v: nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Load (Loc l)) ∗ l ↦ₛ{q} v + spec_ctx ∗ j ⤇ fill K (Load (Loc l)) ∗ l ↦ₛ{q} v ={E}=∗ j ⤇ fill K (of_val v) ∗ l ↦ₛ{q} v. Proof. - iIntros (?) "(#Hinv & Hj & Hl)". + iIntros (?) "(#Hinv & Hj & Hl)". iDestruct "Hinv" as (Ï) "Hinv". rewrite /spec_ctx /tpool_mapsto /heapS_mapsto. iInv specN as (tp σ) ">[Hown %]" "Hclose". iDestruct (own_valid_2 with "Hown Hj") @@ -256,12 +258,12 @@ Section cfg. eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto. Qed. - Lemma step_store E Ï j K l v' e v: + Lemma step_store E j K l v' e v: to_val e = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Store (Loc l) e) ∗ l ↦ₛ v' + spec_ctx ∗ j ⤇ fill K (Store (Loc l) e) ∗ l ↦ₛ v' ={E}=∗ j ⤇ fill K Unit ∗ l ↦ₛ v. Proof. - iIntros (??) "(#Hinv & Hj & Hl)". + iIntros (??) "(#Hinv & Hj & Hl)". iDestruct "Hinv" as (Ï) "Hinv". rewrite /spec_ctx /tpool_mapsto /heapS_mapsto. iInv specN as (tp σ) ">[Hown %]" "Hclose". iDestruct (own_valid_2 with "Hown Hj") @@ -281,12 +283,12 @@ Section cfg. eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto. Qed. - Lemma step_cas_fail E Ï j K l q v' e1 v1 e2 v2: + Lemma step_cas_fail E j K l q v' e1 v1 e2 v2: to_val e1 = Some v1 → to_val e2 = Some v2 → nclose specN ⊆ E → v' ≠v1 → - spec_ctx Ï âˆ— j ⤇ fill K (CAS (Loc l) e1 e2) ∗ l ↦ₛ{q} v' + spec_ctx ∗ j ⤇ fill K (CAS (Loc l) e1 e2) ∗ l ↦ₛ{q} v' ={E}=∗ j ⤇ fill K (#â™ false) ∗ l ↦ₛ{q} v'. Proof. - iIntros (????) "(#Hinv & Hj & Hl)". + iIntros (????) "(#Hinv & Hj & Hl)". iDestruct "Hinv" as (Ï) "Hinv". rewrite /spec_ctx /tpool_mapsto /heapS_mapsto. iInv specN as (tp σ) ">[Hown %]" "Hclose". iDestruct (own_valid_2 with "Hown Hj") @@ -302,12 +304,12 @@ Section cfg. eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto. Qed. - Lemma step_cas_suc E Ï j K l e1 v1 v1' e2 v2: + Lemma step_cas_suc E j K l e1 v1 v1' e2 v2: to_val e1 = Some v1 → to_val e2 = Some v2 → nclose specN ⊆ E → v1 = v1' → - spec_ctx Ï âˆ— j ⤇ fill K (CAS (Loc l) e1 e2) ∗ l ↦ₛ v1' + spec_ctx ∗ j ⤇ fill K (CAS (Loc l) e1 e2) ∗ l ↦ₛ v1' ={E}=∗ j ⤇ fill K (#â™ true) ∗ l ↦ₛ v2. Proof. - iIntros (????) "(#Hinv & Hj & Hl)"; subst. + iIntros (????) "(#Hinv & Hj & Hl)"; subst. iDestruct "Hinv" as (Ï) "Hinv". rewrite /spec_ctx /tpool_mapsto /heapS_mapsto. iInv specN as (tp σ) ">[Hown %]" "Hclose". iDestruct (own_valid_2 with "Hown Hj") @@ -327,83 +329,84 @@ Section cfg. eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto. Qed. - Lemma step_rec E Ï j K e1 e2 v : + Lemma step_rec E j K e1 e2 v : to_val e2 = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (App (Rec e1) e2) + spec_ctx ∗ j ⤇ fill K (App (Rec e1) e2) ={E}=∗ j ⤇ fill K (e1.[Rec e1,e2/]). Proof. by intros ?; apply: do_step_pure. Qed. - Lemma step_lam E Ï j K e1 e2 v : + Lemma step_lam E j K e1 e2 v : to_val e2 = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (App (Lam e1) e2) + spec_ctx ∗ j ⤇ fill K (App (Lam e1) e2) ={E}=∗ j ⤇ fill K (e1.[e2/]). Proof. by intros ?; apply: do_step_pure. Qed. - Lemma step_letin E Ï j K e1 e2 v : + Lemma step_letin E j K e1 e2 v : to_val e1 = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (LetIn e1 e2) + spec_ctx ∗ j ⤇ fill K (LetIn e1 e2) ={E}=∗ j ⤇ fill K (e2.[e1/]). Proof. by intros ?; apply: do_step_pure. Qed. - Lemma step_seq E Ï j K e1 e2 v : + Lemma step_seq E j K e1 e2 v : to_val e1 = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Seq e1 e2) + spec_ctx ∗ j ⤇ fill K (Seq e1 e2) ={E}=∗ j ⤇ fill K e2. Proof. by intros ?; apply: do_step_pure. Qed. - Lemma step_tlam E Ï j K e : + Lemma step_tlam E j K e : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (TApp (TLam e)) ={E}=∗ j ⤇ fill K e. + spec_ctx ∗ j ⤇ fill K (TApp (TLam e)) ={E}=∗ j ⤇ fill K e. Proof. by intros ?; apply: do_step_pure. Qed. - Lemma step_Fold E Ï j K e v : + Lemma step_Fold E j K e v : to_val e = Some v → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Unfold (Fold e)) ={E}=∗ j ⤇ fill K e. + spec_ctx ∗ j ⤇ fill K (Unfold (Fold e)) ={E}=∗ j ⤇ fill K e. Proof. by intros ?; apply: do_step_pure. Qed. - Lemma step_fst E Ï j K e1 v1 e2 v2 : + Lemma step_fst E j K e1 v1 e2 v2 : to_val e1 = Some v1 → to_val e2 = Some v2 → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Fst (Pair e1 e2)) ={E}=∗ j ⤇ fill K e1. + spec_ctx ∗ j ⤇ fill K (Fst (Pair e1 e2)) ={E}=∗ j ⤇ fill K e1. Proof. by intros; apply: do_step_pure. Qed. - Lemma step_snd E Ï j K e1 v1 e2 v2 : + Lemma step_snd E j K e1 v1 e2 v2 : to_val e1 = Some v1 → to_val e2 = Some v2 → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Snd (Pair e1 e2)) ={E}=∗ j ⤇ fill K e2. + spec_ctx ∗ j ⤇ fill K (Snd (Pair e1 e2)) ={E}=∗ j ⤇ fill K e2. Proof. by intros; apply: do_step_pure. Qed. - Lemma step_case_inl E Ï j K e0 v0 e1 e2 : + Lemma step_case_inl E j K e0 v0 e1 e2 : to_val e0 = Some v0 → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Case (InjL e0) e1 e2) + spec_ctx ∗ j ⤇ fill K (Case (InjL e0) e1 e2) ={E}=∗ j ⤇ fill K (e1.[e0/]). Proof. by intros; apply: do_step_pure. Qed. - Lemma step_case_inr E Ï j K e0 v0 e1 e2 : + Lemma step_case_inr E j K e0 v0 e1 e2 : to_val e0 = Some v0 → nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Case (InjR e0) e1 e2) + spec_ctx ∗ j ⤇ fill K (Case (InjR e0) e1 e2) ={E}=∗ j ⤇ fill K (e2.[e0/]). Proof. by intros; apply: do_step_pure. Qed. - Lemma step_if_false E Ï j K e1 e2 : + Lemma step_if_false E j K e1 e2 : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (If (#â™ false) e1 e2) ={E}=∗ j ⤇ fill K e2. + spec_ctx ∗ j ⤇ fill K (If (#â™ false) e1 e2) ={E}=∗ j ⤇ fill K e2. Proof. by intros; apply: do_step_pure. Qed. - Lemma step_if_true E Ï j K e1 e2 : + Lemma step_if_true E j K e1 e2 : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (If (#â™ true) e1 e2) ={E}=∗ j ⤇ fill K e1. + spec_ctx ∗ j ⤇ fill K (If (#â™ true) e1 e2) ={E}=∗ j ⤇ fill K e1. Proof. by intros; apply: do_step_pure. Qed. - Lemma step_nat_binop E Ï j K op a b : + Lemma step_nat_binop E j K op a b : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (BinOp op (#n a) (#n b)) + spec_ctx ∗ j ⤇ fill K (BinOp op (#n a) (#n b)) ={E}=∗ j ⤇ fill K (of_val (binop_eval op a b)). Proof. by intros; apply: do_step_pure. Qed. - Lemma step_fork E Ï j K e : + Lemma step_fork E j K e : nclose specN ⊆ E → - spec_ctx Ï âˆ— j ⤇ fill K (Fork e) ={E}=∗ ∃ j', j ⤇ fill K Unit ∗ j' ⤇ e. + spec_ctx ∗ j ⤇ fill K (Fork e) ={E}=∗ ∃ j', j ⤇ fill K Unit ∗ j' ⤇ e. Proof. - iIntros (?) "[#Hspec Hj]". rewrite /spec_ctx /tpool_mapsto. + iIntros (?) "[#Hinv Hj]". iDestruct "Hinv" as (Ï) "Hinv". + rewrite /spec_ctx /tpool_mapsto. iInv specN as (tp σ) ">[Hown %]" "Hclose". iDestruct (own_valid_2 with "Hown Hj") as %[[?%tpool_singleton_included' _]%prod_included ?]%auth_both_valid. diff --git a/theories/logrel/F_mu_ref_conc/soundness_binary.v b/theories/logrel/F_mu_ref_conc/soundness_binary.v index 79cab342..2ce4327f 100644 --- a/theories/logrel/F_mu_ref_conc/soundness_binary.v +++ b/theories/logrel/F_mu_ref_conc/soundness_binary.v @@ -26,8 +26,10 @@ Proof. iExists (λ σ _, own γ (â— to_gen_heap σ)); iFrame. iApply wp_fupd. iApply wp_wand_r. iSplitL. - iPoseProof ((Hlog _ _ [] [] ([e'], ∅)) with "[$Hcfg]") as "Hrel". - { iApply (@logrel_binary.interp_env_nil Σ HeapΣ). } + iPoseProof ((Hlog _ _ [] []) with "[]") as "Hrel". + { iSplit. + - by iExists ([e'], ∅). + - by iApply (@logrel_binary.interp_env_nil Σ HeapΣ). } simpl. replace e with e.[env_subst[]] at 2 by by asimpl. iApply ("Hrel" $! 0 []). -- GitLab