diff --git a/theories/spanning_tree/mon.v b/theories/spanning_tree/mon.v index 4dfce4ea9a0b02ed019b0e6968c613843d3b3abe..0ef578b577116005b00abfa4d86d0e58331bb3f8 100644 --- a/theories/spanning_tree/mon.v +++ b/theories/spanning_tree/mon.v @@ -80,7 +80,7 @@ Definition Gmon_graph (G : Gmon) : graph loc := omap excl_chlC_chl G. Definition Gmon_graph_dom (G : Gmon) : ✓ G → dom (gset loc) (Gmon_graph G) = dom (gset _) G. Proof. - intros Hvl; apply mapset_eq => i. rewrite ?elem_of_dom lookup_omap. + intros Hvl; apply elem_of_equiv_L=> i. rewrite !elem_of_dom lookup_omap. specialize (Hvl i). split. - revert Hvl; case _ : (G !! i) => [[]|] //=; eauto. intros _ [? Hgi]; inversion Hgi. @@ -230,7 +230,7 @@ Proof. intros H. by rewrite lookup_op lookup_singleton_ne //= left_id_L. Qed. Lemma of_graph_dom g G : dom (gset loc) (of_graph g G) = dom (gset _) g. Proof. - apply mapset_eq=>i. + apply elem_of_equiv_L=>i. rewrite ?elem_of_dom lookup_imap /of_graph_elem lookup_omap. case _ : (g !! i) => [x|]; case _ : (G !! i) => [[]|] //=; split; intros [? Hcn]; inversion Hcn; eauto.