diff --git a/Makefile b/Makefile index 51cf12d0852549f11dde463406570900ee31d326..fa51a2f76603c5121c6817f59fc307b8184c79ab 100644 --- a/Makefile +++ b/Makefile @@ -1,6 +1,7 @@ %: Makefile.coq phony +@make -f Makefile.coq $@ +# Compile this project all: Makefile.coq +@make -f Makefile.coq all @@ -11,11 +12,13 @@ clean: Makefile.coq Makefile.coq: _CoqProject Makefile coq_makefile -f _CoqProject | sed 's/$$(COQCHK) $$(COQCHKFLAGS) $$(COQLIBS)/$$(COQCHK) $$(COQCHKFLAGS) $$(subst -Q,-R,$$(COQLIBS))/' > Makefile.coq -iris-local: clean - git submodule update --init iris - ln -nsf iris iris-enabled - +make -C iris -f Makefile +# Use local Iris dependency +iris-local: + git submodule update --init iris # If not initialized, then initialize; If not updated with this remote, then update + ln -nsf iris iris-enabled # If not linked, then link + +make -C iris -f Makefile # If not built, then build +# Use system-installed Iris dependency iris-system: clean rm -f iris-enabled diff --git a/README.md b/README.md index a83b6ccd6dd243b1bda8752055ae6cc1df4e9c68..d313458f637f247b91bee6670a8d1043e0659d11 100644 --- a/README.md +++ b/README.md @@ -24,3 +24,7 @@ version), run `make iris-local`. Run this command again later to update the local Iris, in case the preferred Iris version changed. Now run `make` to build the full development. + +## Update local dependency by tracking Iris `master` + + git submodule update --remote diff --git a/iris b/iris index 6cb76aaaf15d46c74c2a779f1e4e1ca1a53c0838..e3cb5b14e01ac2b349516f084e7def4bf7283ab9 160000 --- a/iris +++ b/iris @@ -1 +1 @@ -Subproject commit 6cb76aaaf15d46c74c2a779f1e4e1ca1a53c0838 +Subproject commit e3cb5b14e01ac2b349516f084e7def4bf7283ab9 diff --git a/theories/atomic.v b/theories/atomic.v index be3168a8b4d0952d4d4b3a0c369fc4dfe912bb99..84ddd9a335cfb8c11191765a8b7e7a41c5b8e44a 100644 --- a/theories/atomic.v +++ b/theories/atomic.v @@ -16,8 +16,8 @@ Section atomic. (Ei Eo: coPset) (* inside/outside masks *) (e: expr _) : iProp Σ := (∀ P Q, (P ={Eo, Ei}=> ∃ x:A, - α x ★ - ((α x ={Ei, Eo}=★ P) ∧ - (∀ v, β x v ={Ei, Eo}=★ Q v)) - ) -★ {{ P }} e @ ⊤ {{ Q }})%I. + α x ∗ + ((α x ={Ei, Eo}=∗ P) ∧ + (∀ v, β x v ={Ei, Eo}=∗ Q v)) + ) -∗ {{ P }} e @ ⊤ {{ Q }})%I. End atomic. diff --git a/theories/atomic_incr.v b/theories/atomic_incr.v index 6e5dbba04034890dba2a460344dc34dc0f27f4e4..0b408dad547348154d45f9f132bc2d702cc6dcb7 100644 --- a/theories/atomic_incr.v +++ b/theories/atomic_incr.v @@ -20,7 +20,7 @@ Section incr. (* TODO: Can we have a more WP-style definition and avoid the equality? *) Definition incr_triple (l: loc) := atomic_triple (fun (v: Z) => l ↦ #v)%I - (fun v ret => ret = #v ★ l ↦ #(v + 1))%I + (fun v ret => ret = #v ∗ l ↦ #(v + 1))%I (nclose heapN) ⊤ (incr #l). @@ -61,7 +61,7 @@ Section user. Definition incr_2 : val := λ: "x", let: "l" := ref "x" in - incr "l" || incr "l";; + incr "l" ||| incr "l";; !"l". (* prove that incr is safe w.r.t. data race. TODO: prove a stronger post-condition *) @@ -74,8 +74,8 @@ Section user. wp_alloc l as "Hl". iMod (inv_alloc N _ (∃x':Z, l ↦ #x')%I with "[Hl]") as "#?"; first eauto. wp_let. - wp_bind (_ || _)%E. - iApply (wp_par (λ _, True%I) (λ _, True%I)). + wp_bind (_ ||| _)%E. + iApply (wp_par (λ _, True%I) (λ _, True%I) with "[]"). iFrame "Hh". (* prove worker triple *) iDestruct (incr_atomic_spec N l with "Hh") as "Hincr"=>//. diff --git a/theories/atomic_pcas.v b/theories/atomic_pcas.v index 4b6b397ec66695b6acd750a9abcf1275b99df933..0319265b2ad213b1ef76a933086c22e51ca3917c 100644 --- a/theories/atomic_pcas.v +++ b/theories/atomic_pcas.v @@ -23,7 +23,7 @@ Section atomic_pair. Definition ϕ (ls: val) (xs: val) : iProp Σ := (∃ (l1 l2: loc) (x1 x2: val), - ls = (#l1, #l2)%V ★ xs = (x1, x2)%V ★ l1 ↦ x1 ★ l2 ↦ x2)%I. + ls = (#l1, #l2)%V ∗ xs = (x1, x2)%V ∗ l1 ↦ x1 ∗ l2 ↦ x2)%I. Definition β (ab: val) (xs xs': val) (v: val) : iProp Σ := (■∃ a b x1 x2 x1' x2': val, @@ -69,8 +69,8 @@ Section atomic_pair. Lemma pcas_atomic_spec (mk_syncer: val) (l1 l2: loc) (x1 x2: val) : heapN ⊥ N → mk_syncer_spec N mk_syncer → - heap_ctx ★ l1 ↦ x1 ★ l2 ↦ x2 - ⊢ WP sync mk_syncer pcas_seq (LitV l1, LitV l2)%V {{ f, ∃ γ, gHalf γ (x1, x2)%V ★ ∀ x, □ atomic_triple' α β ⊤ ⊤ f x γ }}. + heap_ctx ∗ l1 ↦ x1 ∗ l2 ↦ x2 + ⊢ WP sync mk_syncer pcas_seq (LitV l1, LitV l2)%V {{ f, ∃ γ, gHalf γ (x1, x2)%V ∗ ∀ x, □ atomic_triple' α β ⊤ ⊤ f x γ }}. Proof. iIntros (HN Hmk_syncer) "(#Hh & Hl1 & Hl2)". iDestruct (atomic_spec with "[Hl1 Hl2]") as "Hspec"=>//. diff --git a/theories/atomic_sync.v b/theories/atomic_sync.v index 02c6b22b0b35f9495b205cd6e6d8079ca36604ff..189924157b8e06994b1fdc990c40692f750b7845 100644 --- a/theories/atomic_sync.v +++ b/theories/atomic_sync.v @@ -20,13 +20,13 @@ Section atomic_sync. Definition gHalf (γ: gname) g : iProp Σ := own γ ((1/2)%Qp, DecAgree g). Definition atomic_seq_spec (ϕ: A → iProp Σ) α β (f x: val) := - (∀ g, {{ ϕ g ★ α g }} f x {{ v, ∃ g', ϕ g' ★ β g g' v }})%I. + (∀ g, {{ ϕ g ∗ α g }} f x {{ v, ∃ g', ϕ g' ∗ β g g' v }})%I. (* TODO: Provide better masks. ∅ as inner mask is pretty weak. *) Definition atomic_synced (ϕ: A → iProp Σ) γ (f f': val) := (□ ∀ α β (x: val), atomic_seq_spec ϕ α β f x → - atomic_triple (fun g => gHalf γ g ★ □ α g)%I - (fun g v => ∃ g', gHalf γ g' ★ β g g' v)%I + atomic_triple (fun g => gHalf γ g ∗ □ α g)%I + (fun g v => ∃ g', gHalf γ g' ∗ β g g' v)%I ∅ ⊤ (f' x))%I. (* TODO: Use our usual style with a generic post-condition. *) @@ -42,7 +42,7 @@ Section atomic_sync. Definition atomic_syncer_spec (mk_syncer: val) := ∀ (g0: A) (ϕ: A → iProp Σ), heapN ⊥ N → - {{{ heap_ctx ★ ϕ g0 }}} mk_syncer #() {{{ γ s, RET s; gHalf γ g0 ★ is_atomic_syncer ϕ γ s }}}. + {{{ heap_ctx ∗ ϕ g0 }}} mk_syncer #() {{{ γ s, RET s; gHalf γ g0 ∗ is_atomic_syncer ϕ γ s }}}. Lemma atomic_spec (mk_syncer: val): mk_syncer_spec N mk_syncer → atomic_syncer_spec mk_syncer. @@ -50,7 +50,7 @@ Section atomic_sync. iIntros (Hsync g0 ϕ HN ret) "[#Hh Hϕ] Hret". iMod (own_alloc (((1 / 2)%Qp, DecAgree g0) ⋅ ((1 / 2)%Qp, DecAgree g0))) as (γ) "[Hg1 Hg2]". { by rewrite pair_op dec_agree_idemp. } - iApply (Hsync (∃ g: A, ϕ g ★ gHalf γ g)%I with "[$Hh Hg1 Hϕ]")=>//. + iApply (Hsync (∃ g: A, ϕ g ∗ gHalf γ g)%I with "[$Hh Hg1 Hϕ]")=>//. { iExists g0. by iFrame. } iNext. iIntros (s) "#Hsyncer". iApply "Hret". iSplitL "Hg2"; first done. iIntros "!#". diff --git a/theories/evmap.v b/theories/evmap.v index 8010da28badb71b701077e5e3d8d1b1386e88bfc..0a27e63ec8f101d9d242b950e0081eee503a6186 100644 --- a/theories/evmap.v +++ b/theories/evmap.v @@ -69,7 +69,7 @@ Section evmapR. (* Some other supporting lemmas *) Lemma map_agree_none' γm (m: evmapR K A unitR) hd x: m !! hd = None → - own γm (◠m) ★ ev γm hd x ⊢ False. + own γm (◠m) ∗ ev γm hd x ⊢ False. Proof. iIntros (?) "[Hom Hev]". iCombine "Hom" "Hev" as "Hauth". @@ -80,7 +80,7 @@ Section evmapR. Lemma map_agree_eq' γm m hd x agy: m !! hd = Some ((), agy) → - ev γm hd x ★ own γm (◠m) ⊢ DecAgree x = agy. + ev γm hd x ∗ own γm (◠m) ⊢ DecAgree x = agy. Proof. iIntros (?) "[#Hev Hom]". iCombine "Hom" "Hev" as "Hauth". @@ -99,7 +99,7 @@ Section evmapR. (* Evidence is the witness of membership *) Lemma ev_map_witness γm m hd x: - ev γm hd x ★ own γm (◠m) ⊢ m !! hd = Some (∅, DecAgree x). + ev γm hd x ∗ own γm (◠m) ⊢ m !! hd = Some (∅, DecAgree x). Proof. iIntros "[#Hev Hom]". destruct (m !! hd) as [[[] agy]|] eqn:Heqn. @@ -109,7 +109,7 @@ Section evmapR. (* Two evidences coincides *) Lemma evmap_frag_agree_split γm p (a1 a2: A): - ev γm p a1 ★ ev γm p a2 ⊢ a1 = a2. + ev γm p a1 ∗ ev γm p a2 ⊢ a1 = a2. Proof. iIntros "[Ho Ho']". destruct (decide (a1 = a2)) as [->|Hneq]. diff --git a/theories/flat.v b/theories/flat.v index c7d587777b944aefc417fa5f6f3e222e988958a5..e9d112abae3c13d039e2ae0fa97ddec13da0475d 100644 --- a/theories/flat.v +++ b/theories/flat.v @@ -71,55 +71,55 @@ Section proof. Context `{!heapG Σ, !lockG Σ, !evidenceG loc val unitR Σ, !flatG Σ} (N : namespace). Definition init_s (ts: toks) := - let '(_, γ1, γ3, _, _) := ts in (own γ1 (Excl ()) ★ own γ3 (Excl ()))%I. + let '(_, γ1, γ3, _, _) := ts in (own γ1 (Excl ()) ∗ own γ3 (Excl ()))%I. Definition installed_s R (ts: toks) (f x: val) := let '(γx, γ1, _, γ4, γq) := ts in (∃ (P: val → iProp Σ) Q, - own γx ((1/2)%Qp, DecAgree x) ★ P x ★ ({{ R ★ P x }} f x {{ v, R ★ Q x v }}) ★ - saved_prop_own γq (Q x) ★ own γ1 (Excl ()) ★ own γ4 (Excl ()))%I. + own γx ((1/2)%Qp, DecAgree x) ∗ P x ∗ ({{ R ∗ P x }} f x {{ v, R ∗ Q x v }}) ∗ + saved_prop_own γq (Q x) ∗ own γ1 (Excl ()) ∗ own γ4 (Excl ()))%I. Definition received_s (ts: toks) (x: val) γr := let '(γx, _, _, γ4, _) := ts in - (own γx ((1/2/2)%Qp, DecAgree x) ★ own γr (Excl ()) ★ own γ4 (Excl ()))%I. + (own γx ((1/2/2)%Qp, DecAgree x) ∗ own γr (Excl ()) ∗ own γ4 (Excl ()))%I. Definition finished_s (ts: toks) (x y: val) := let '(γx, γ1, _, γ4, γq) := ts in (∃ Q: val → val → iProp Σ, - own γx ((1/2)%Qp, DecAgree x) ★ saved_prop_own γq (Q x) ★ - Q x y ★ own γ1 (Excl ()) ★ own γ4 (Excl ()))%I. + own γx ((1/2)%Qp, DecAgree x) ∗ saved_prop_own γq (Q x) ∗ + Q x y ∗ own γ1 (Excl ()) ∗ own γ4 (Excl ()))%I. Definition evm := ev loc toks. (* p slot invariant *) Definition p_inv R (γm γr: gname) (v: val) := (∃ (ts: toks) (p : loc), - v = #p ★ evm γm p ts ★ + v = #p ∗ evm γm p ts ∗ ((* INIT *) - (∃ y: val, p ↦{1/2} InjRV y ★ init_s ts)∨ + (∃ y: val, p ↦{1/2} InjRV y ∗ init_s ts)∨ (* INSTALLED *) - (∃ f x: val, p ↦{1/2} InjLV (f, x) ★ installed_s R ts f x) ∨ + (∃ f x: val, p ↦{1/2} InjLV (f, x) ∗ installed_s R ts f x) ∨ (* RECEIVED *) - (∃ f x: val, p ↦{1/2} InjLV (f, x) ★ received_s ts x γr) ∨ + (∃ f x: val, p ↦{1/2} InjLV (f, x) ∗ received_s ts x γr) ∨ (* FINISHED *) - (∃ x y: val, p ↦{1/2} InjRV y ★ finished_s ts x y)))%I. + (∃ x y: val, p ↦{1/2} InjRV y ∗ finished_s ts x y)))%I. Definition srv_stack_inv R γs γm γr s := (∃ xs, is_stack' (p_inv R γm γr) γs xs s)%I. - Definition srv_tokm_inv γm := (∃ m : tokmR, own γm (◠m) ★ [★ map] p ↦ _ ∈ m, ∃ v, p ↦{1/2} v)%I. + Definition srv_tokm_inv γm := (∃ m : tokmR, own γm (◠m) ∗ [∗ map] p ↦ _ ∈ m, ∃ v, p ↦{1/2} v)%I. Lemma install_push_spec R (p: loc) (γs γm γr: gname) (ts: toks) (s: loc) (f x: val) (Φ: val → iProp Σ) : heapN ⊥ N → - heap_ctx ★ inv N (srv_stack_inv R γs γm γr s ★ srv_tokm_inv γm) ★ - evm γm p ts ★ installed_s R ts f x ★ - p ↦{1/2} InjLV (f, x) ★ ((∃ hd, evs γs hd #p) -★ Φ #()) + heap_ctx ∗ inv N (srv_stack_inv R γs γm γr s ∗ srv_tokm_inv γm) ∗ + evm γm p ts ∗ installed_s R ts f x ∗ + p ↦{1/2} InjLV (f, x) ∗ ((∃ hd, evs γs hd #p) -∗ Φ #()) ⊢ WP push #s #p {{ Φ }}. Proof. iIntros (HN) "(#Hh & #? & Hpm & Hs & Hp & HΦ)". rewrite /srv_stack_inv. - iDestruct (push_spec N (p_inv R γm γr) (fun v => (∃ hd, evs γs hd #p) ★ v = #())%I + iDestruct (push_spec N (p_inv R γm γr) (fun v => (∃ hd, evs γs hd #p) ∗ v = #())%I with "[-HΦ]") as "Hpush"=>//. - iFrame "Hh". iSplitL "Hp Hs Hpm"; last eauto. iExists ts. iExists p. iSplit=>//. iFrame "Hpm". @@ -132,16 +132,16 @@ Section proof. Definition installed_recp (ts: toks) (x: val) (Q: val → iProp Σ) := let '(γx, _, γ3, _, γq) := ts in - (own γ3 (Excl ()) ★ own γx ((1/2)%Qp, DecAgree x) ★ saved_prop_own γq Q)%I. + (own γ3 (Excl ()) ∗ own γx ((1/2)%Qp, DecAgree x) ∗ saved_prop_own γq Q)%I. Lemma install_spec R P Q (f x: val) (γs γm γr: gname) (s: loc) (Φ: val → iProp Σ): heapN ⊥ N → - heap_ctx ★ inv N (srv_stack_inv R γs γm γr s ★ srv_tokm_inv γm) ★ - P ★ ({{ R ★ P }} f x {{ v, R ★ Q v }}) ★ - (∀ (p: loc) (ts: toks), installed_recp ts x Q -★ evm γm p ts -★(∃ hd, evs γs hd #p) -★ Φ #p) + heap_ctx ∗ inv N (srv_stack_inv R γs γm γr s ∗ srv_tokm_inv γm) ∗ + P ∗ ({{ R ∗ P }} f x {{ v, R ∗ Q v }}) ∗ + (∀ (p: loc) (ts: toks), installed_recp ts x Q -∗ evm γm p ts -∗(∃ hd, evs γs hd #p) -∗ Φ #p) ⊢ WP install f x #s {{ Φ }}. Proof. iIntros (HN) "(#Hh & #? & Hpx & Hf & HΦ)". @@ -181,14 +181,14 @@ Section proof. Lemma loop_iter_doOp_spec R (s hd: loc) (γs γm γr: gname) xs Φ: heapN ⊥ N → - heap_ctx ★ inv N (srv_stack_inv R γs γm γr s ★ srv_tokm_inv γm) ★ own γr (Excl ()) ★ R ★ - is_list' γs hd xs ★ (own γr (Excl ()) -★ R -★ Φ #()) + heap_ctx ∗ inv N (srv_stack_inv R γs γm γr s ∗ srv_tokm_inv γm) ∗ own γr (Excl ()) ∗ R ∗ + is_list' γs hd xs ∗ (own γr (Excl ()) -∗ R -∗ Φ #()) ⊢ WP iter #hd doOp {{ Φ }}. Proof. iIntros (HN) "(#Hf & #? & Ho2 & HR & Hlist' & HΦ)". iApply (iter_spec N (p_inv R γm γr) Φ - (* (fun v => v = #() ★ own γr (Excl ()) ★ R)%I *) - γs s (own γr (Excl ()) ★ R)%I (srv_tokm_inv γm) xs hd doOp doOp + (* (fun v => v = #() ∗ own γr (Excl ()) ∗ R)%I *) + γs s (own γr (Excl ()) ∗ R)%I (srv_tokm_inv γm) xs hd doOp doOp with "[-]")=>//. - rewrite /f_spec. iIntros (Φ' x _) "(#Hh & #? & Hev & [Hor HR] & HΦ')". @@ -296,12 +296,12 @@ Section proof. Definition own_γ3 (ts: toks) := let '(_, _, γ3, _, _) := ts in own γ3 (Excl ()). Definition finished_recp (ts: toks) (x y: val) := let '(γx, _, _, _, γq) := ts in - (∃ Q, own γx ((1 / 2)%Qp, DecAgree x) ★ saved_prop_own γq (Q x) ★ Q x y)%I. + (∃ Q, own γx ((1 / 2)%Qp, DecAgree x) ∗ saved_prop_own γq (Q x) ∗ Q x y)%I. Lemma try_srv_spec R (s: loc) (lk: val) (γs γr γm γlk: gname) Φ : heapN ⊥ N → - heap_ctx ★ inv N (srv_stack_inv R γs γm γr s ★ srv_tokm_inv γm) ★ - is_lock N γlk lk (own γr (Excl ()) ★ R) ★ Φ #() + heap_ctx ∗ inv N (srv_stack_inv R γs γm γr s ∗ srv_tokm_inv γm) ∗ + is_lock N γlk lk (own γr (Excl ()) ∗ R) ∗ Φ #() ⊢ WP try_srv lk #s {{ Φ }}. Proof. iIntros (?) "(#? & #? & #? & HΦ)". @@ -319,20 +319,20 @@ Section proof. iModIntro. wp_let. wp_bind (iter _ _). iApply wp_wand_r. iSplitL "HR Ho2 Hxs2". - { iApply (loop_iter_doOp_spec R _ _ _ _ _ _ (fun v => own γr (Excl ()) ★ R ★ v = #()))%I=>//. + { iApply (loop_iter_doOp_spec R _ _ _ _ _ _ (fun v => own γr (Excl ()) ∗ R ∗ v = #()))%I=>//. iFrame "#". iFrame. iIntros "? ?". by iFrame. } iIntros (f') "[Ho [HR %]]". subst. - wp_let. iApply (release_spec with "[Hlocked Ho HR]"); first iFrame "#★". + wp_let. iApply (release_spec with "[Hlocked Ho HR]"); first iFrame "#∗". iNext. iIntros. done. Qed. Lemma loop_spec R (p s: loc) (lk: val) (γs γr γm γlk: gname) (ts: toks) Φ: heapN ⊥ N → - heap_ctx ★ inv N (srv_stack_inv R γs γm γr s ★ srv_tokm_inv γm) ★ - is_lock N γlk lk (own γr (Excl ()) ★ R) ★ - own_γ3 ts ★ evm γm p ts ★ - (∃ hd, evs γs hd #p) ★ (∀ x y, finished_recp ts x y -★ Φ y) + heap_ctx ∗ inv N (srv_stack_inv R γs γm γr s ∗ srv_tokm_inv γm) ∗ + is_lock N γlk lk (own γr (Excl ()) ∗ R) ∗ + own_γ3 ts ∗ evm γm p ts ∗ + (∃ hd, evs γs hd #p) ∗ (∀ x y, finished_recp ts x y -∗ Φ y) ⊢ WP loop #p #s lk {{ Φ }}. Proof. iIntros (HN) "(#Hh & #? & #? & Ho3 & #Hev & Hhd & HΦ)". @@ -398,7 +398,7 @@ Section proof. iAssert (srv_tokm_inv γm) with "[Hm]" as "Hm"; first eauto. { iExists ∅. iFrame. by rewrite big_sepM_empty. } wp_seq. wp_bind (newlock _). - iApply (newlock_spec _ (own γr (Excl ()) ★ R)%I with "[$Hh $Ho2 $HR]")=>//. + iApply (newlock_spec _ (own γr (Excl ()) ∗ R)%I with "[$Hh $Ho2 $HR]")=>//. iNext. iIntros (lk γlk) "#Hlk". wp_let. wp_bind (new_stack _). iApply (new_stack_spec' _ (p_inv _ γm γr))=>//. diff --git a/theories/misc.v b/theories/misc.v index 0a559fd772ff3744ad23875a3540da27bcd22fd0..bb5703461ba386eb10e18a8d741f3dc95e43198c 100644 --- a/theories/misc.v +++ b/theories/misc.v @@ -21,7 +21,7 @@ End lemmas. Section excl. Context `{!inG Σ (exclR unitC)}. Lemma excl_falso γ Q': - own γ (Excl ()) ★ own γ (Excl ()) ⊢ Q'. + own γ (Excl ()) ∗ own γ (Excl ()) ⊢ Q'. Proof. iIntros "[Ho1 Ho2]". iCombine "Ho1" "Ho2" as "Ho". iExFalso. by iDestruct (own_valid with "Ho") as "%". @@ -33,7 +33,7 @@ Section heap_extra. Lemma bogus_heap p (q1 q2: Qp) a b: ~((q1 + q2)%Qp ≤ 1%Qp)%Qc → - heap_ctx ★ p ↦{q1} a ★ p ↦{q2} b ⊢ False. + heap_ctx ∗ p ↦{q1} a ∗ p ↦{q2} b ⊢ False. Proof. iIntros (?) "(#Hh & Hp1 & Hp2)". iCombine "Hp1" "Hp2" as "Hp". @@ -52,12 +52,12 @@ Section big_op_later. Lemma big_sepM_delete_later Φ m i x : m !! i = Some x → - ▷ ([★ map] k↦y ∈ m, Φ k y) ⊣⊢ ▷ Φ i x ★ ▷ [★ map] k↦y ∈ delete i m, Φ k y. + ▷ ([∗ map] k↦y ∈ m, Φ k y) ⊣⊢ ▷ Φ i x ∗ ▷ [∗ map] k↦y ∈ delete i m, Φ k y. Proof. intros ?. rewrite big_sepM_delete=>//. apply later_sep. Qed. Lemma big_sepM_insert_later Φ m i x : m !! i = None → - ▷ ([★ map] k↦y ∈ <[i:=x]> m, Φ k y) ⊣⊢ ▷ Φ i x ★ ▷ [★ map] k↦y ∈ m, Φ k y. + ▷ ([∗ map] k↦y ∈ <[i:=x]> m, Φ k y) ⊣⊢ ▷ Φ i x ∗ ▷ [∗ map] k↦y ∈ m, Φ k y. Proof. intros ?. rewrite big_sepM_insert=>//. apply later_sep. Qed. End big_op_later. @@ -65,7 +65,7 @@ Section pair. Context `{EqDecision A, !inG Σ (prodR fracR (dec_agreeR A))}. Lemma m_frag_agree γm (q1 q2: Qp) (a1 a2: A): - own γm (q1, DecAgree a1) ★ own γm (q2, DecAgree a2) ⊢ (a1 = a2). + own γm (q1, DecAgree a1) ∗ own γm (q2, DecAgree a2) ⊢ (a1 = a2). Proof. iIntros "[Ho Ho']". destruct (decide (a1 = a2)) as [->|Hneq]=>//. @@ -76,8 +76,8 @@ Section pair. Qed. Lemma m_frag_agree' γm (q1 q2: Qp) (a1 a2: A): - own γm (q1, DecAgree a1) ★ own γm (q2, DecAgree a2) - ⊢ own γm ((q1 + q2)%Qp, DecAgree a1) ★ (a1 = a2). + own γm (q1, DecAgree a1) ∗ own γm (q2, DecAgree a2) + ⊢ own γm ((q1 + q2)%Qp, DecAgree a1) ∗ (a1 = a2). Proof. iIntros "[Ho Ho']". iDestruct (m_frag_agree with "[Ho Ho']") as %Heq; first iFrame. diff --git a/theories/peritem.v b/theories/peritem.v index ce12b4741d39325b14b116e7a21cf689b32bbf3a..c86c94fe1a69b4b28ea6b33001b5e6379fbb9a9e 100644 --- a/theories/peritem.v +++ b/theories/peritem.v @@ -16,13 +16,13 @@ Section defs. Fixpoint is_list' (γ: gname) (hd: loc) (xs: list val) : iProp Σ := match xs with | [] => (∃ q, hd ↦{ q } NONEV)%I - | x :: xs => (∃ (hd': loc) q, hd ↦{q} SOMEV (x, #hd') ★ evs γ hd x ★ is_list' γ hd' xs)%I + | x :: xs => (∃ (hd': loc) q, hd ↦{q} SOMEV (x, #hd') ∗ evs γ hd x ∗ is_list' γ hd' xs)%I end. Lemma in_list' γ x xs: ∀ hd, x ∈ xs → is_list' γ hd xs - ⊢ ∃ (hd' hd'': loc) q, hd' ↦{q} SOMEV (x, #hd'') ★ evs γ hd' x. + ⊢ ∃ (hd' hd'': loc) q, hd' ↦{q} SOMEV (x, #hd'') ∗ evs γ hd' x. Proof. induction xs as [|x' xs' IHxs']. - intros ? Hin. inversion Hin. @@ -36,13 +36,13 @@ Section defs. iApply IHxs'=>//. Qed. - Definition perR' hd v v' := (v = ((∅: unitR), DecAgree v') ★ R v' ★ allocated hd)%I. + Definition perR' hd v v' := (v = ((∅: unitR), DecAgree v') ∗ R v' ∗ allocated hd)%I. Definition perR hd v := (∃ v', perR' hd v v')%I. - Definition allR γ := (∃ m : evmapR loc val unitR, own γ (◠m) ★ [★ map] hd ↦ v ∈ m, perR hd v)%I. + Definition allR γ := (∃ m : evmapR loc val unitR, own γ (◠m) ∗ [∗ map] hd ↦ v ∈ m, perR hd v)%I. Definition is_stack' γ xs s := - (∃ hd: loc, s ↦ #hd ★ is_list' γ hd xs ★ allR γ)%I. + (∃ hd: loc, s ↦ #hd ∗ is_list' γ hd xs ∗ allR γ)%I. Global Instance is_list'_timeless γ hd xs: TimelessP (is_list' γ hd xs). Proof. generalize hd. induction xs; apply _. Qed. @@ -51,7 +51,7 @@ Section defs. Proof. apply _. Qed. Lemma dup_is_list' γ : ∀ xs hd, - heap_ctx ★ is_list' γ hd xs ⊢ |==> is_list' γ hd xs ★ is_list' γ hd xs. + heap_ctx ∗ is_list' γ hd xs ⊢ |==> is_list' γ hd xs ∗ is_list' γ hd xs. Proof. induction xs as [|y xs' IHxs']. - iIntros (hd) "(#? & Hs)". @@ -63,7 +63,7 @@ Section defs. Qed. Lemma extract_is_list γ : ∀ xs hd, - heap_ctx ★ is_list' γ hd xs ⊢ |==> is_list' γ hd xs ★ is_list hd xs. + heap_ctx ∗ is_list' γ hd xs ⊢ |==> is_list' γ hd xs ∗ is_list hd xs. Proof. induction xs as [|y xs' IHxs']. - iIntros (hd) "(#? & Hs)". @@ -78,8 +78,8 @@ Section defs. (* Rf, RI is some frame *) ∀ Φ (x: val), heapN ⊥ N → - heap_ctx ★ inv N ((∃ xs, is_stack' γ xs s) ★ RI) ★ (∃ hd, evs γ hd x) ★ - Rf ★ (Rf -★ Φ #()) + heap_ctx ∗ inv N ((∃ xs, is_stack' γ xs s) ∗ RI) ∗ (∃ hd, evs γ hd x) ∗ + Rf ∗ (Rf -∗ Φ #()) ⊢ WP f x {{ Φ }}. End defs. @@ -89,7 +89,7 @@ Section proofs. Lemma new_stack_spec' Φ RI: heapN ⊥ N → - heap_ctx ★ RI ★ (∀ γ s : loc, inv N ((∃ xs, is_stack' R γ xs s) ★ RI) -★ Φ #s) + heap_ctx ∗ RI ∗ (∀ γ s : loc, inv N ((∃ xs, is_stack' R γ xs s) ∗ RI) -∗ Φ #s) ⊢ WP new_stack #() {{ Φ }}. Proof. iIntros (HN) "(#Hh & HR & HΦ)". iApply wp_fupd. @@ -97,19 +97,19 @@ Lemma new_stack_spec' Φ RI: { apply auth_valid_discrete_2. done. } wp_seq. wp_bind (ref NONE)%E. wp_alloc l as "Hl". wp_alloc s as "Hs". - iAssert ((∃ xs : list val, is_stack' R γ xs s) ★ RI)%I with "[-HΦ Hm']" as "Hinv". + iAssert ((∃ xs : list val, is_stack' R γ xs s) ∗ RI)%I with "[-HΦ Hm']" as "Hinv". { iFrame. iExists [], l. iFrame. simpl. iSplitL "Hl". - eauto. - iExists ∅. iSplitL. iFrame. by iApply (big_sepM_empty (fun hd v => perR R hd v)). } - iMod (inv_alloc N _ ((∃ xs : list val, is_stack' R γ xs s) ★ RI)%I with "[-HΦ Hm']") as "#?"; first eauto. + iMod (inv_alloc N _ ((∃ xs : list val, is_stack' R γ xs s) ∗ RI)%I with "[-HΦ Hm']") as "#?"; first eauto. by iApply "HΦ". Qed. Lemma iter_spec Φ γ s (Rf RI: iProp Σ): ∀ xs hd (f: expr) (f': val), heapN ⊥ N → f_spec N R γ xs s f' Rf RI → to_val f = Some f' → - heap_ctx ★ inv N ((∃ xs, is_stack' R γ xs s) ★ RI) ★ - is_list' γ hd xs ★ Rf ★ (Rf -★ Φ #()) + heap_ctx ∗ inv N ((∃ xs, is_stack' R γ xs s) ∗ RI) ∗ + is_list' γ hd xs ∗ Rf ∗ (Rf -∗ Φ #()) ⊢ WP (iter #hd) f {{ v, Φ v }}. Proof. induction xs as [|x xs' IHxs']. @@ -128,12 +128,12 @@ Lemma new_stack_spec' Φ RI: Lemma push_spec Φ γ (s: loc) (x: val) RI: heapN ⊥ N → - heap_ctx ★ R x ★ inv N ((∃ xs, is_stack' R γ xs s) ★ RI) ★ ((∃ hd, evs γ hd x) -★ Φ #()) + heap_ctx ∗ R x ∗ inv N ((∃ xs, is_stack' R γ xs s) ∗ RI) ∗ ((∃ hd, evs γ hd x) -∗ Φ #()) ⊢ WP push #s x {{ Φ }}. Proof. iIntros (HN) "(#Hh & HRx & #? & HΦ)". iDestruct (push_atomic_spec N s x with "Hh") as "Hpush"=>//. - iSpecialize ("Hpush" $! (R x) (fun ret => (∃ hd, evs γ hd x) ★ ret = #())%I with "[]"). + iSpecialize ("Hpush" $! (R x) (fun ret => (∃ hd, evs γ hd x) ∗ ret = #())%I with "[]"). - iIntros "!# Rx". (* open the invariant *) iInv N as "[IH1 ?]" "Hclose". @@ -161,7 +161,7 @@ Lemma new_stack_spec' Φ RI: iDestruct "Hhd''" as (q v) "Hhd''". iExFalso. iApply (bogus_heap hd' 1%Qp q); first apply Qp_not_plus_q_ge_1. iFrame "#". iFrame. - * iAssert (evs γ hd' x ★ ▷ (allR R γ))%I + * iAssert (evs γ hd' x ∗ ▷ (allR R γ))%I with ">[Rx Hom HRm Hhd'1]" as "[#Hox ?]". { iDestruct (evmap_alloc _ _ _ m with "[Hom]") as ">[Hom Hox]"=>//. diff --git a/theories/sync.v b/theories/sync.v index 9de76b8e5e0e112e4090cdd60ada784109714c09..de42cf6c654cdf5fbd80a2609da7a72a8d500fea 100644 --- a/theories/sync.v +++ b/theories/sync.v @@ -12,7 +12,7 @@ Section sync. How much more annoying? And how much to we gain in terms of things becomign easier to prove? *) Definition synced R (f f': val) := - (□ ∀ P Q (x: val), {{ R ★ P }} f x {{ v, R ★ Q v }} → + (□ ∀ P Q (x: val), {{ R ∗ P }} f x {{ v, R ∗ Q v }} → {{ P }} f' x {{ Q }})%I. (* Notice that `s f` is *unconditionally safe* to execute, and only @@ -24,5 +24,5 @@ Section sync. Definition mk_syncer_spec (mk_syncer: val) := ∀ (R: iProp Σ), heapN ⊥ N → - {{{ heap_ctx ★ R }}} mk_syncer #() {{{ s, RET s; is_syncer R s }}}. + {{{ heap_ctx ∗ R }}} mk_syncer #() {{{ s, RET s; is_syncer R s }}}. End sync. diff --git a/theories/treiber.v b/theories/treiber.v index 59c9b694dbb7944f28be746d33c4248cd87e74fe..bb356779cc6f24127763ceb9181af2149359d139 100644 --- a/theories/treiber.v +++ b/theories/treiber.v @@ -41,11 +41,11 @@ Section proof. Fixpoint is_list (hd: loc) (xs: list val) : iProp Σ := match xs with | [] => (∃ q, hd ↦{ q } NONEV)%I - | x :: xs => (∃ (hd': loc) q, hd ↦{ q } SOMEV (x, #hd') ★ is_list hd' xs)%I + | x :: xs => (∃ (hd': loc) q, hd ↦{ q } SOMEV (x, #hd') ∗ is_list hd' xs)%I end. Lemma dup_is_list : ∀ xs hd, - heap_ctx ★ is_list hd xs ⊢ is_list hd xs ★ is_list hd xs. + heap_ctx ∗ is_list hd xs ⊢ is_list hd xs ∗ is_list hd xs. Proof. induction xs as [|y xs' IHxs']. - iIntros (hd) "(#? & Hs)". @@ -57,7 +57,7 @@ Section proof. Qed. Lemma uniq_is_list: - ∀ xs ys hd, heap_ctx ★ is_list hd xs ★ is_list hd ys ⊢ xs = ys. + ∀ xs ys hd, heap_ctx ∗ is_list hd xs ∗ is_list hd ys ⊢ xs = ys. Proof. induction xs as [|x xs' IHxs']. - induction ys as [|y ys' IHys']. @@ -86,7 +86,7 @@ Section proof. by subst. Qed. - Definition is_stack (s: loc) xs: iProp Σ := (∃ hd: loc, s ↦ #hd ★ is_list hd xs)%I. + Definition is_stack (s: loc) xs: iProp Σ := (∃ hd: loc, s ↦ #hd ∗ is_list hd xs)%I. Global Instance is_list_timeless xs hd: TimelessP (is_list hd xs). Proof. generalize hd. induction xs; apply _. Qed. @@ -97,7 +97,7 @@ Section proof. Lemma new_stack_spec: ∀ (Φ: val → iProp Σ), heapN ⊥ N → - heap_ctx ★ (∀ s, is_stack s [] -★ Φ #s) ⊢ WP new_stack #() {{ Φ }}. + heap_ctx ∗ (∀ s, is_stack s [] -∗ Φ #s) ⊢ WP new_stack #() {{ Φ }}. Proof. iIntros (Φ HN) "[#Hh HΦ]". wp_seq. wp_bind (ref NONE)%E. wp_alloc l as "Hl". @@ -108,11 +108,11 @@ Section proof. Definition push_triple (s: loc) (x: val) := atomic_triple (fun xs_hd: list val * loc => - let '(xs, hd) := xs_hd in s ↦ #hd ★ is_list hd xs)%I + let '(xs, hd) := xs_hd in s ↦ #hd ∗ is_list hd xs)%I (fun xs_hd ret => let '(xs, hd) := xs_hd in ∃ hd': loc, - ret = #() ★ s ↦ #hd' ★ hd' ↦ SOMEV (x, #hd) ★ is_list hd xs)%I + ret = #() ∗ s ↦ #hd' ∗ hd' ↦ SOMEV (x, #hd) ∗ is_list hd xs)%I (nclose heapN) ⊤ (push #s x). @@ -142,12 +142,12 @@ Section proof. Definition pop_triple (s: loc) := atomic_triple (fun xs_hd: list val * loc => - let '(xs, hd) := xs_hd in s ↦ #hd ★ is_list hd xs)%I + let '(xs, hd) := xs_hd in s ↦ #hd ∗ is_list hd xs)%I (fun xs_hd ret => let '(xs, hd) := xs_hd in - (ret = NONEV ★ xs = [] ★ s ↦ #hd ★ is_list hd []) ∨ - (∃ x q (hd': loc) xs', hd ↦{q} SOMEV (x, #hd') ★ ret = SOMEV x ★ - xs = x :: xs' ★ s ↦ #hd' ★ is_list hd' xs'))%I + (ret = NONEV ∗ xs = [] ∗ s ↦ #hd ∗ is_list hd []) ∨ + (∃ x q (hd': loc) xs', hd ↦{q} SOMEV (x, #hd') ∗ ret = SOMEV x ∗ + xs = x :: xs' ∗ s ↦ #hd' ∗ is_list hd' xs'))%I (nclose heapN) ⊤ (pop #s).